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Data incompleteness: missing/unknown data values, partially available data, ...

Reasons: 

mistakes: wrong/missing entries

restrictions on data access

data heterogeneity: data exchange/integration

Incomplete data



Assume data has to be transferred from one data source to another

Emp

name dpt

Green sales
White sales
Brown eng
Black eng

source database target database

data restructuring
Emploee Manager

name

Green
White
Brown
Black

mgr emp

? Green
? White
? Brown
? Black

Commonly only some concepts shared by the two data sources 

✓ e.g. no information about the manager from the source

Incompleteness and data heterogeneity



?

Querying incomplete data

Emploee Manager

name

Green
White
Brown
Black

mgr emp

? Green
? White
? Brown
? Black

 Q: which employees are managers?

incomplete database



Querying incomplete data

Semantics of query answering 

‣ How should the result of a query be defined 
in the presence of incompleteness?
 

Query evaluation

‣ How do we evaluate a query on 
an incomplete database?

‣ Can this be done efficiently ?

?

Emploee Manager

name

Green
White
Brown
Black

mgr emp

? Green
? White
? Brown
? Black

 Q: which employees are managers?

incomplete database



Incompleteness in theory and practice

Incompleteness in database systems

‣ Semantics of query answering: poorly designed 

‣ Query evaluation: very efficient, optimized query engines

eg:

• In SQL, the standard relational database query language,

the following are consistent statements for sets X, Y 

|X| > |Y| and X−Y=∅

• This may occur if  Y contains incomplete information (SQL nulls) 



Incompleteness in theory and practice

Incompleteness in database systems

‣ Semantics of query answering: poorly designed 

‣ Query evaluation: very efficient, optimized query engines

Theoretical framework for incompleteness
[Imielinski-Lipski,  Abiteboul-Kanellakis-Grahne, etc. 80’s]

‣ Semantics of query answering: clean framework, suitable semantics 

‣ Query evaluation: hard



Incompleteness in theory and practice

Bridging the gap between theory and systems: 

answer queries correctly, use classical query engines

not satisfactorily addressed even in the simplest data model

Incompleteness in database systems

‣ Semantics of query answering: poorly designed 

‣ Query evaluation: very efficient, optimized query engines

Theoretical framework for incompleteness
[Imielinski-Lipski,  Abiteboul-Kanellakis-Grahne, etc. 80’s]

‣ Semantics of query answering: clean framework, suitable semantics 

‣ Query evaluation: hard
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Incomplete relational data

Complete instance:  over Const

dom(I) : the subset of Const ∪ Var occurring in I

Employee

Green

x1

Brown

ManagerManager

Green x1

x1 Brown

Green x2

Const : a countably infinite set of constants

Var : a countably infinite set of variables 
(nulls)

I

Database schema (relational signature) σ : a set of relation symbols, with arities

 eg σ ={ Employee, Manager }   arity(Employee)=1,  arity(Manager)=2

Incomplete database instance (naïve table) of schema σ [Imielinski, Lipski ’84]: 

 associates to each relation symbol R of  σ a finite subset of (Const ∪ Var)arity(R)



⟦I⟧

I

Any incomplete database represents a set of complete databases (possible worlds) 

Semantics of incompletness: 
a function ⟦ ⟧ associating with each incomplete database a set of complete databases

Semantics of incompleteness



Semantics of incompleteness

Three well known relational semantics:

‣ OWA (Open World Assumption) [Imielinski-Lipski ’84]

‣ CWA (Closed World Assumption) [Reiter ’77, Imielinski-Lipski ’84]

‣ WCWA (Weak Closed World Assumption) [Reiter ’77]

I

Employee

Green

x1

Brown

ManagerManager

Green x1

x1 Brown

Green x2



Semantics of incompleteness

OWA:

Green

White

Brown

Green White

White Brown

Green Black

Green

Brown

Green Brown

Brown Brown

Black Brown

Green

White

Brown

Black

Smith

Green White

White Brown

Green Black

...

⟦I⟧OWA

v: valuation

Interpretation of incompleteness:

• missing data values,  missing tuples

x1=White x2=Black

x1=x2=Brown x
1=W

hite x
2=Black

Employee

Green

x1

Brown

ManagerManager

Green x1

x1 Brown

Green x2

⟦I⟧OWA  = { D over Const | D ⊇ v(I) 
                 for some v: Var → Const }

I



Semantics of incompleteness

Green Brown

Brown Brown

Employee

Green

x1

Brown

ManagerManager

Green x1

x1 Brown

Green x2

I

CWA:

⟦I⟧CWA = { D over Const |  D = v(I) 
                for some v: Var → Const }

Interpretation of incompleteness:

• missing data values

• no missing tuples

Green

White

Brown

Green White

White Brown

Green Black
x1=White x2=Black

x1=x2=Brown x
1=W

hite x
2=Black

Green

Brown

Green White

White Brown

Green Black

Green

White

Brown

...

⟦I⟧CWA



Semantics of incompleteness

Green

Brown

Green Brown

Brown Brown

Green Green

⟦I⟧WCWA

WCWA:

⟦I⟧WCWA ={D over Const | 
                 D ⊇ v(I),  dom(D)=dom(v(I))  
                 for some v: Var → Const}

Interpretation of incompleteness:

• missing data values, missing tuples

• no missing domain elements

Employee

Green

x1

Brown

ManagerManager

Green x1

x1 Brown

Green x2

I

x1=White x2=Black

x1=x2=Brown x
1=W

hite x
2=Black

Green

White

Brown

Green White

White Brown

Green Black

...

Green

White

Brown

Black

Green White

White Brown

Green Black

Green Brown
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Query over σ: 
a mapping Q associating to each complete instance I of σ a relation over dom(I)

Q:  which employees are managers? 

Employee

Green

White

Brown

ManagerManager

Green White

White Brown

Green Black

Green

White

I Q(I)

usually expressed in fragments of First Order logic (FO)

Queries



Employee

Green

White

Brown

ManagerManager

Green White

White Brown

Green Black

I Q(I)

Boolean query over σ: 
a mapping Q associating to each complete instance I of σ a value in {true, false}

(there is a manager who has a manager)

true

Q:  

Queries



Semantics of query answering: certain answers

Q (Boolean)

I

Querying incomplete databases

⟦I⟧



Certain answers

...
...

Green

White

Brown

Green White

White Brown

Green Black

under either CWA, OWA and WCWA

Employee

Green

x1

Brown

ManagerManager

Green x1

x1 Brown

Green x2

I

Example    Q :  “There is a manager who has a manager”

certQ(I) = true ⟦I⟧CWA / OWA / WCWA



Need to use the available (incomplete) data

Computing certain answers on I : usually hard 

‣ from coNP-complete to undecidable for FO [Imielinski-Lipski ’84,  Abiteboul et al ’91]

certQ(I)

I

Q

Computing certain answers

⟦I⟧



 

 

for all I

Naïve evaluation

Q(I) = certQ(I)

Q

Naïve evaluation works for Q :

Q(I) :  Q evaluated directly on I,  
as if variables were new distinct constants  

(xi ≠ xj    for i ≠j      

xi ≠ c for all c ∈ Const  )

I

Q

⟦I⟧



Naïve evaluation

...

Green

White

Brown

Green White

White Brown

Green Black

under CWA, OWA and WCWA

Employee

Green

x1

Brown

ManagerManager

Green x1

x1 Brown

Green x2

I

Example    Q :  “There is a manager who has a manager”

certQ(I) = true

Q(I) = true

⟦I⟧CWA / OWA / WCWA



Naïve evaluation

...

Example    Q :  “There is a manager who has a manager”

Employee ManagerManager

I
⟦I⟧CWA / OWA / WCWAGeneralizing:

 Q(I) = certQ(I) for all I 

  ⇒ naïve evaluation works for Q 

    under CWA, OWA and WCWA



Naïve evaluation: a model-checking problem (checking I ⊨ Q) EFFICIENT

‣ PTIME in the size of the instance for FO queries

‣ based on classical query evaluation algorithms of database engines

‣ can benefit from query optimization techniques

Certain answers: an entailment problem (checking that I entails Q)   HARD

Naïve evaluation in theory and practice

Naïve evaluation works  

correct query answering semantics, classical query evaluation algorithms /

entailment reduces to (straightforward) model-checking

clearly not always possible ! (undecidable vs. PTIME)



⟦I⟧OWA/WCWA

...

Naïve evaluation does not always work

Green

White

Brown

Black

Green White

White Brown

Brown Black

I

Employee

Green

x1

Brown

ManagerManager

Green x1

x1 Brown

Brown x2

D

Q(I) = true

certQ(I) = false under OWA and WCWA

⇒ naïve evaluation does not work for Q under OWA and WCWA

A concrete example     Q: “All employees are managers”
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Relating naïve evaluation and syntactic fragments

A unified framework for relating naïve evaluation and syntactic fragments for 
several possible semantics:

Naïve evaluation works 
for Q under [[ ]]

 Q is “monotone” 
w.r.t. [[ ]]

 Q is preserved under a 
class of homomorphisms

 Q is expressible in a 
syntactic fragment

Preservation
theorems 



Monotonicity and preservation 

Shown in a very general setting subsuming every 
data model / semantics of incompleteness

(even beyond relational databases)

Naïve evaluation works 
for Q under [[ ]]

 Q is “monotone” 
w.r.t. [[ ]]

 Q is preserved under a 
class of homomorphisms

 Q is expressible in a 
syntactic fragment

Preservation
theorems 



Naïve evaluation and monotonicity

Database domain:  a quadruple〈 D, C, ⟦ ⟧, ≈ 〉

description example

D : a set database objects 
(complete and incomplete)

all naïve tables over a fixed 
schema σ

C : a subset of D complete database objects all complete instances over σ 

⟦ ⟧ : D → 2C semantics of incompleteness ⟦ ⟧OWA , ⟦ ⟧CWA , etc.

≈ : an equivalence 
relation on D

equivalence of objects (w.r.t. 
queries)

isomorphism of relational 
instances

subsumes practically every data model / semantics of incompleteness

Boolean query: Q : D → {true, false}

generic :      x ≈ y  implies  Q(x)=Q(y)

monotone w.r.t. ⟦ ⟧ :  y ∈ ⟦x⟧  implies  Q(x) ⇒ Q(y)



Naïve evaluation and monotonicity

Saturation property for〈 D, C , ⟦ ⟧ , ≈ 〉:

For all  x ∈ D  there exists y ∈ ⟦x⟧     y ≈ x   

Over a saturated database domain, 
if Q is a generic Boolean query:

Naïve evaluation works for Q iff 
Q is monotone w.r.t. ⟦ ⟧

holds for most common semantics

Naïve evaluation works 
for Q under [[ ]]

 Q is “monotone” 
w.r.t. [[ ]]

 Q is preserved under a 
class of homomorphisms

 Q is expressible in a 
syntactic fragment

Preservation
theorems 



Monotonicity and preservation 

Naïve evaluation works 
for Q under [[ ]]

 Q is “monotone” 
w.r.t. [[ ]]

 Q is preserved under a 
class of homomorphisms

 Q is expressible in a 
syntactic fragment

Preservation
theorems 

‣ monotonicity =  “preservation” under the semantics

‣ relational semantics:  usually homomorphism-based



Many variants: onto homomorphism, strong onto homomorphism, ...

Monotonicity and preservation 

homomorphism  D → D’ :   a mapping  h: dom(D) → dom(D’) s.t. h(D) ⊆ D’

a b

a a

c c

d d
a,b → c

D D’

Q preserved under homomorphism:

D → D’ implies Q(D) ⇒ Q(D’)   for all D  

monotonicity w.r.t different semantics ↔ 

preservation under different notions of homomorphism



Preservation and syntactic fragments

Naïve evaluation works 
for Q under [[ ]]

 Q is “monotone” 
w.r.t. [[ ]]

 Q is preserved under a 
class of homomorphisms

 Q is expressible in a 
syntactic fragment

Preservation
theorems 

Preservation theorems

‣ syntactic characterizations of preservation 
properties of queries in a given logic

‣ classical results in (finite) model theory



Preservation and syntactic fragments

Homomorphism Preservation Theorem: over arbitrary structures
an FO query Q is preserved under homomorphism iff Q is in ∃Pos

‣ recently proved over finite structures [Rossman ’08]

∃ Pos :    {∃, ∧, ∨}-FO  (Unions of Conjunctive Queries)



Preservation and syntactic fragments

Homomorphism Preservation Theorem: over arbitrary structures
an FO query Q is preserved under homomorphism iff Q is in ∃Pos

‣ recently proved over finite structures [Rossman ’08]

∃ Pos :    {∃, ∧, ∨}-FO  (Unions of Conjunctive Queries)

Lyndon Positivity Theorem [Lyndon ’59]: over arbitrary structures
an FO query Q is preserved under onto homomorphism iff Q is in Pos

‣ fails in the finite  [Ajtai-Gurevich 87, Rosen ’95, Stolboushkin ’95]

Pos: {∃, ∀,∧, ∨}-FO



Preservation and syntactic fragments

Preservation theorems: 

(Syntax ⇒ Preservation) holds in the finite as well

⇒ classes of queries where naïve evaluation works

Naïve evaluation works 
for Q under [[ ]]

 Q is “monotone” 
w.r.t. [[ ]]

 Q is preserved under a 
class of homomorphisms

 Q is expressible in a 
syntactic fragment

Preservation
theorems 



Naïve evaluation and syntactic fragments

Three well known semantics as instances of our framework

Naïve evaluation works under:

OWA

Preservation under 
homomorphism

∃Pos

WCWA

Preservation 
under  onto 

homomorphism

Pos

CWA

Preservation 
under “strong onto” 

homomorphism

Pos+∀G

[Rossman] [Lyndon] [Gheerbrant, 
Libkin, S.]

Naïve evaluation works 
for Q under [[ ]]

 Q is “monotone” 
w.r.t. [[ ]]

 Q is preserved under a 
class of homomorphisms

 Q is expressible in a 
syntactic fragment

Preservation
theorems 



Examples revisited

Q :  “There is a manager who has a manager” Pos

Pos+∀G

∃Pos
Q

⇒ naïve evaluation works for Q under CWA OWA,  WCWA



Examples revisited

Q :  “All employees are managers”

Q

Pos

Pos+∀G

∃Pos⇒ naïve evaluation works for Q under CWA

(recall:  not true under OWA, nor under WCWA)

Pos+∀G extends Pos with a limited form of negation (universal guards)

‣ a very natural fragment

Naïve evaluation works well beyond  ∃Pos under other semantics than OWA
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Beyond OWA, CWA and WCWA

Semantics of incompleteness have been considered in several contexts:

‣ programming semantics, logic programming,  data exchange,... 

[Minker’82,  Ohori’90,  Rounds’91,  Libkin’95,  Hernich’11]

➡ powerset semantics

➡ minimal semantics



Beyond OWA, CWA and WCWA

Naïve evaluation works under:

Powerset semantics

Preservation under 
unions of strong onto 

homomorphisms

∃Pos+∀Gbool

Minimal semantics

Preservation under  
unions of minimal 
homomorphisms

over cores

∃Pos+∀Gbool

Naïve evaluation works 
for Q under [[ ]]

 Q is “monotone” 
w.r.t. [[ ]]

 Q is preserved under a 
class of homomorphisms

 Q is expressible in a 
syntactic fragment

Preservation
theorems 



Beyond the relational data model

XML: hierarchically structured data 

<?xml version="1.0" encoding="UTF-8"?>
<library>

<book title= “found. of DBs”>
<author name= “Abiteboul” > </author>
<author name= “Hull”>    </author>
<author name= “Vianu”>  </author>

</book>
<book title= “...”>

<author name= “Vianu” > </author>
....

</book>
</library>

modeled as trees with data values associated to nodes

book

library

author

book

author
[name=
“Abiteboul” ]

author
[name= 
“Vianu” ]

[title= “...”][title= “found. of DBs” ]

author
[name= 
“Hull”]

[name= 
“Vianu”]



Beyond the relational data model

Incomplete XML based on a form of  “tree patterns” [Barcelo-Libkin-Poggi-S. ’10]

_ *

*

library

authorauthor author

[name= x ]

[title= y ]

[name= x]

‣ missing data values

‣ missing nodes

‣ missing structural information

✓ labels

✓ parent-child, next-sibling 
relationships

✓ etc.

Tree-pattern-queries: the analog of ∃Pos on trees

[name=
“Abiteboul” ]



Beyond the relational data model

The analog of naïve evaluation works for tree-pattern-queries under OWA on 
rigid tree patterns [Barcelo-Libkin-Poggi-S. ’10]

‣ rigidity:   essentially avoids structural incompleteness

Our framework explains this result:

‣ database domain: 

✓ the set of complete/incomplete trees, 

✓ OWA semantics: homomorphism-based

‣ tree pattern queries are preserved under homomorphisms of trees

‣ rigidity ensures the saturation property



Moving forward

Naïve evaluation on combinations of data models/semantics, e.g

➡ XML/CWA

➡ graph-structured data

Query languages beyond FO

➡ fixed-point logics, fragments of SO, etc.

Naïve evaluation over restricted instances

➡ Applications: data integration/exchange

Beyond naïve-evaluation

➡ rewriting of the query/instance 
(classical in ontology-based query answering)



Thank you!





Real life paradoxes

• SQL adopts a three-valued logic

‣ essentially any comparison involving null values evaluates to unknown

• An SQL condition checking X − Y ≠ ∅

EXISTS ( SELECT X.A FROM  X

WHERE X.A  NOT IN  ( SELECT  Y.A  FROM  Y ) )

• X.A = {1, 2, 3, . . . , N} and Y.A = {null}, then X − Y = ∅ no matter what N is!

• That’s how SQL programs work: this is part of the SQL 1999 ANSI Standard





Homomorphisms

Homomorphism  D → D’ :   

a mapping  h: dom(D) → dom(D’) s.t. 

h(D) ⊆ D’ 

a b

a c

d e

f f
a → d   
b,c → eD D’

Onto homomorphism  D → D’ :   

a homomorphism  h: D → D’ s.t.  

h(dom(D)) = dom(D’) 

Strong onto homomorphism  D → D’ :   

a homomorphism  h: D → D’ s.t.  

h(D) = D’

a b

a c

d e

e e
a → d   
b,c → eD D’

a b

a c

d e

a → d   
b,c → eD D’



Homomorphisms

‣ Union of strong onto homomorphisms  D → D’ :   ∪i h i (D)  = D’

‣ D-minimal homomorphism h on D : 
there exists no h’,  preserving all constants preserved by h,  s.t.   h’(D) ⊊ h(D)

‣ Union of minimal homomorphisms D → D’ :  ∪i hi (D) = D’

 with h1...hn D-minimal and preserving the same constants





Homomorphism-based relational semantics

OWA

D
v(D)

D’ 

v ⊆

D

CWA
v(D) D’ 

v =

D’ ∈ ⟦D⟧OWA               iff    ∃v   v(D)  ⊆ D’

D’ ∈ ⟦D⟧CWA               iff    ∃v   v (D) = D’ 



Homomorphism-based relational semantics

OWA

D
v(D)

D’ 

v ⊆

D

CWA
v(D) D’ 

v =

• Essentially based on two steps:  1) valuation of nulls   2) extension of the instance 

• Other well-known semantics follow the same paradigm:

D’ ∈ ⟦D⟧OWA               iff    ∃v   v(D)  ⊆ D’

D’ ∈ ⟦D⟧CWA               iff    ∃v   v (D) = D’ 



Homomorphism-based relational semantics

OWA

D
v(D)

D’ 

v ⊆

D

CWA
v(D) D’ 

v =

• Essentially based on two steps:  1) valuation of nulls   2) extension of the instance 

• Other well-known semantics follow the same paradigm:

D

WCWA

v(D)
D’ 

v ⊆
=domain

Weak Closed  World Assumption [Reiter 77]

D’ ∈ ⟦D⟧WCWA         iff    ∃v   v(D)  ⊆ D’  ∧ 

dom(D’) = dom(v(D))

D’ ∈ ⟦D⟧OWA               iff    ∃v   v(D)  ⊆ D’

D’ ∈ ⟦D⟧CWA               iff    ∃v   v (D) = D’ 



Homomorphism-based relational semantics

OWA

D
v(D)

D’ 

v ⊆

D

CWA
v(D) D’ 

v =

D

WCWA

v(D)
D’ 

v ⊆
=domain

Can be generalized to arbitrary semantic relations...

D’ ∈ ⟦D⟧WCWA         iff    ∃v   v(D)  ⊆ D’  ∧ 

dom(D’) = dom(v(D))

D’ ∈ ⟦D⟧OWA               iff    ∃v   v(D)  ⊆ D’

D’ ∈ ⟦D⟧CWA               iff    ∃v   v (D) = D’ 



Homomorphism-based relational semantics

OWA

D
v(D)

D’ 

v ⊆

D

CWA
v(D) D’ 

v =

D

R-based
v(D) D’ 

v R
D’ ∈ ⟦D⟧R                        iff     ∃v   v(D) R D’ 

R:  reflexive binary relation between complete instances

D

WCWA

v(D)
D’ 

v ⊆
=domain

D’ ∈ ⟦D⟧WCWA         iff    ∃v   v(D)  ⊆ D’  ∧ 

dom(D’) = dom(v(D))

D’ ∈ ⟦D⟧OWA               iff    ∃v   v(D)  ⊆ D’

D’ ∈ ⟦D⟧CWA               iff    ∃v   v (D) = D’ 



Monotonicity and preservation 

• R-homomorphism  D → D’  (D and D’ complete):     

a mapping h over dom(D)  s.t.   h(D) R D’

•   R-homomorphisms “mimic” the semantic mapping:

 

• except that valuations distinguish constants from nulls

•   However,  using query genericity:

If a relational semantics ⟦ ⟧ is given by R 
and Q is a generic Boolean query 

Q is monotone w.r.t. ⟦ ⟧ iff
Q is preserved under R-homomorphisms

Naïve evaluation works 
for Q under [[ ]]

 Q is “monotone” 
w.r.t. [[ ]]

 Q is preserved under a 
class of homomorphisms

 Q belongs to a syntactic 
fragment

Preservation 
theorems 

D D’ 
Rv



Naïve evaluation and preservation 

If a relational semantics is given 
by R, the saturation property holds: 

Naïve evaluation works 
for Q under [[ ]]

 Q is “monotone” 
w.r.t. [[ ]]

 Q is preserved under a 
class of homomorphisms

 Q belongs to a syntactic 
fragment

Preservation 
theorems D

v*(D)≈D

⟦D⟧

v*: distinct nulls to distinct constants 
not occurring in D

Combining the two steps:



Naïve evaluation and preservation 

Theorem
If a relational semantics is given by R 
and Q is a generic Boolean query 

Naïve evaluation works for Q iff
Q is preserved under R-homomorphisms

R R-homomorphism
OWA ⊆ homomorphisms

CWA
strong onto homomorphisms

(i.e. homomorphisms D →h(D))

⊆
=domain

onto homomorphisms

=

WCWA

Naïve evaluation works 
for Q under [[ ]]

 Q is “monotone” 
w.r.t. [[ ]]

 Q is preserved under a 
class of homomorphisms

 Q belongs to a syntactic 
fragment

Preservation 
theorems 





• What about strong onto homomorphisms ?

‣ There is a preservation result in the infinite [Keisler ‘65]

‣ complex syntactic restrictions, one binary relation only, problematic to extend...

• A new sufficient condition for preservation, with a good syntax: 

Positive fragment with Universal Guards ( Pos+∀G ) 

Preservation and syntactic fragments of FO 

ϕ := � | ⊥ | R(x̄) | x = y | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃xϕ | ∀xϕ |



∀x̄ ( G(x̄) → ϕ ) with

G : a relation or equality symbol
x̄ : a tuple of distinct variables





Pos+∀G formulas are preserved under strong onto homomorphisms





Semantics arising from orderings

t a ⊥1 b ⊥2 t’ a a b ⊥3

t ⊑ t’   if   t[i] constant ⇒ t’[i] = t[i]        t’ is “more informative” than t

• Lifting to sets of tuples [Hoare, Plotkin 70s]

• D ⊑H D’ : ∀ t ∈ D    ∃ t’ ∈ D’     t ⊑ t’     (Hoare ordering, open-world)

• D ⊑P D’ :  D ⊑H D’  and  ∀ t’ ∈ D’    ∃ t ∈ D     t ⊑ t’      (Plotkin ordering)

⊑

• Information ordering of Codd tuples :



Semantics arising from orderings
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D ⊑H D’ : ∀ t ∈ D    ∃ t’ ∈ D’     t ⊑ t’     (Hoare ordering, open-world)

D ⊑P D’ :  D ⊑H D’  and  ∀ t ∈ D’    ∃ t ∈ D     t ⊑ t’      (Plotkin ordering)

• Orderings give rise to semantics of Codd databases:  

⟦D⟧ = { complete D’ | D ⊑ D’ }

• Observe that Plotkin semantics is more “open” than CWA :

 ⟦D⟧P

D D’



• Extend (and generalize) Plotkin semantics to naïve databases

Powerset semantics

D

Powerset CWA

D’ 

v1

∪ D’ ∈ ⦇D⦈CWA         iff    

∃ valuations v1, ...vn   D’ = ∪i v i (D) 

v2

vn

...

• When restricting to Codd databases Powerset CWA coincides with Plotkin

• Gives rise to a whole new class of semantics:  ∪ is replaced by any suitable 
relation

R ⊆ 2C × C



Naïve evaluation for powerset semantics

• Naïve evaluation ↔ Monotonicity ↔ Preservation continues to hold

• Under the powerset CWA the needed notion is preservation under

unions of strong onto homomorphisms ( i.e. homomorphisms D →∪ hi (D) )

• We have similar results for powerset semantics based on arbitrary R 

• An FO fragment preserved under unions of strong onto homomorphisms:

∃Pos+∀Gbool :     

∃Pos extended with universal guarded sentences

i=1

n

∀x̄ ( G(x̄) → ϕ(x̄) )

Corollary
If Q is a Boolean query from  ∃Pos+∀Gbool

Naïve evaluation works for Q under ⦇·⦈CWA 



The ∃Pos+∀Gbool fragment 
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⊥1

ManagerManager

⊥2 ⊥1
Brown
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⦇D⦈CWA

• Naïve evaluation works for Q1 and Q2 under ⦇·⦈CWA 

• Naïve evaluation does not work for Q under the ⦇·⦈CWA 

⇐ Q1, Q2 ∈ ∃Pos+∀Gbool 

Q2 = ∀x( Employee(x))

Q1 = ∀x( Employee(x) → ∃y Manager(x, y) )

Pos

Pos+∀G

∃Pos

Q1

Q2

∃Pos+∀Gbool
Q

⇒ Q ∉ ∃Pos+∀Gbool 

Q = ∃x∀y( Employee(y) → Manager(x, y) )



Minimal semantics

D’ ∈ ⦇D⦈CWA         iff   

∃ D-minimal valuations v1, ...vn   

D’ = ∪i v i (D) 

min

Minimal Powerset CWA

Minimal powerset semantics: ∪ is replaced by any suitable relation R ⊆ 2C × C 

• A special form of powerset semantics was introduced in the field of deductive 
databases ( GCWA [Minker ’82] )

• Later modified and adopted as data exchange semantics (GCWA* [Hernich’11])

• We define it here for arbitrary incomplete instances:

D D’ 

v1

∪
v2

vn

...

A valuation v on D is D-minimal if there is no valuation v’ s.t.   v’(D) ⊊ v(D)



⊥= a

⊥’= b

⊥, ⊥1 = a

⊥2= b

Minimal semantics and the core

• Not all valuations are minimal:

⊥ ⊥
⊥ ⊥’

D a a
a b

⊥, ⊥’= a    is minimal 

• true also if D is a core

⊥ ⊥ ⊥1

⊥2 ⊥ ⊥
D a a a

b a a

⊥, ⊥1, ⊥2 = a    
is minimal 

Core of D
substructure D’ of D such that D → D’ 
and there is no D’’ ⊊ D’ s.t.  D → D’’ 
(→:  homomorphism preserving constants)

• but if v is a minimal valuation  v(D) = v( core(D) )

• There are other important 
connections between minimal 
semantics and the core (later)



Minimal semantics and the saturation property

Saturation property for〈 D, C , ⟦ ⟧ , ≈ 〉:

For all  x ∈ D  there exists y ∈ ⟦x⟧     y ≈ x   

Naïve evaluation works 
for Q under [[ ]]

 Q is “monotone” 
w.r.t. [[ ]]

saturated 
domain

Under the minimal Powerset CWA  the saturation property does not hold

⊥ ⊥
⊥ ⊥’

D • all D-minimal images are of the form

• No union of D-minimal images can be isomorphic to D

a a



〈 D, C , ⟦ ⟧ , ≈ 〉has a saturated subdomain if   ∃ S     with C ⊆ S ⊆ D  

  and a function X : D → S  (the representative function) s.t. 

• 〈 S, C , ⟦⟧ , ≈ 〉 is saturated

•   ⟦X(x)⟧ = ⟦x⟧ for all x ∈ D

The saturation property revisited

x

X(x)∈ S 

 ⟦X(x)⟧ = ⟦x⟧

y ≈ X(x)

Proposition
If a database domain has a saturated subdomain with representative function X
and Q is a generic Boolean query

Naïve evaluation works for Q iff 
Q is monotone w.r.t. ⟦ ⟧ and Q(x) = Q(X(x)) for all x

Lemma: Under the minimal powerset CWA the set of cores is a saturated 
subdomain with representative function core(·)



• Monotonicity under minimal powerset CWA is

preservation under the mapping

• Query genericity used with care:

‣ valuations are indistinguishable from homomorphisms,
however 

‣ v1, ...vn are minimal w.r.t all other valuations (not all arbitrary 
homomorphisms)

‣ v1, ...vn preserve the same elements of D

Monotonicity and preservation for minimal semantics

D D’ 

v1

∪
v2

vn

...

v1, ...vn   
D-minimal
valuations



Naïve evaluation and preservation for minimal semantics

The right notion of preservation:

‣ D-minimal homomorphism h: 
there exists no h’,  preserving all constants preserved by h,  s.t.   h’(D) ⊊ h(D)

‣ Unions of minimal homomorphisms: homomorphisms D →∪ hi (D)

 with h1...hn D-minimal and preserving the same constants
i=1

n

Theorem
If Q is a generic Boolean query 

Naïve evaluation works for Q under the minimal powerset CWA iff
Q is preserved under unions of minimal homomorphisms  and 
Q(D)=Q(core(D)) for every database D

Similar results hold for arbitrary minimal semantics



Preservation and syntactic fragments for minimal semantics

• Preservation under unions of minimal homomorphisms : no “tight” syntactic 
fragment known

• Remark:  unions of minimal homomorphisms are also unions of strong onto 
homomorphisms

If Q is a Boolean query from ∃Pos+∀Gbool, under the minimal powerset CWA:

• Naïve evaluation works for Q    iff   Q(D) = Q(core(D))  for every D

• Naïve evaluation works over cores



Preservation and syntactic fragments for minimal semantics

• Preservation under unions of minimal homomorphisms : no “tight” syntactic 
fragment known

• Remark:  unions of minimal homomorphisms are also unions of strong onto 
homomorphisms

If Q is a Boolean query from ∃Pos+∀Gbool, under the minimal powerset CWA:

• Naïve evaluation works for Q    iff   Q(D) = Q(core(D))  for every D

• Naïve evaluation works over cores

ManagerManager

⊥ ⊥
⊥ ⊥’

Smith Smith

Black Black
D

⦇D⦈CWA
min

...

Q ∈ ∃Pos+∀Gbool but naïve evaluation does not work    

Q(D) = false  cert(Q, D) = true

Q(D) ≠ Q( core(D) )

∀x, y( Manager(x, y) → x = y )
Q=





Non-Boolean queries

All results can be lifted to non-boolean relational queries.    For a k-ary query Q:
‣ Define a new database domain whose elements are pairs (D, t)

D: a relational database    t : a k-tuple of constants

‣ Define a boolean query Q* s.t. Q*(D,t)=true iff  t ∈ Q(D)

‣ Apply  previous results to Q* and the new database domain ⇒
derive results for Q over the original relational database domain

For k-ary FO queries , k ≥ 0

Semantics Naïve evaluation works for
OWA ∃Pos

WCWA Pos

CWA Pos+∀G

Powerset CWA ∃Pos+∀Gbool

Min Powerset CWA ∃Pos+∀Gbool   iff   Q(D)=Q(core(D)) 


