Efficiently querying incomplete data

Cristina Sirangelo LSV, ENS-Cachan joint work with Amélie Gheerbrant and Leonid Libkin

February 3rd 2015

Plan

Introduction

- Incomplete data model
- Querying incomplete data
 - the key to tractability: naïve evaluation
- What makes naïve evaluation work?
 - a general framework
- Applicability of the framework
- Moving forward

Incomplete data

Data incompleteness: missing/unknown data values, partially available data, ...

Reasons:

mistakes: wrong/missing entries

restrictions on data access

data heterogeneity: data exchange/integration

Incompleteness and data heterogeneity

Commonly only some concepts shared by the two data sources

✓ e.g. no information about the manager from the source

Querying incomplete data

Emploee Manager			
name		mgr	emp
Green		?	Green
White		?	White
Brown		?	Brown
Black		?	Black

incomplete database

Q: which employees are managers?

Querying incomplete data

Semantics of query answering

• How should the result of a query be defined in the presence of incompleteness?

Query evaluation

- How do we evaluate a query on an incomplete database?
- Can this be done efficiently ?

Emploee

Manager

	name
	Green
	White
	Brown
Γ	Black

mgr	emp
?	Green
?	White
?	Brown
?	Black

incomplete database

Q: which employees are managers?

Incompleteness in theory and practice

Incompleteness in database systems

- Semantics of query answering: poorly designed
- Query evaluation: very efficient, optimized query engines

eg:

 In SQL, the standard relational database query language, the following are consistent statements for sets X,Y

|X| > |Y| and $X - Y = \emptyset$

• This may occur if Y contains incomplete information (SQL nulls)

Incompleteness in theory and practice

Incompleteness in database systems

- Semantics of query answering: poorly designed
- Query evaluation: very efficient, optimized query engines

Theoretical framework for incompleteness [Imielinski-Lipski, Abiteboul-Kanellakis-Grahne, etc. 80's]

- Semantics of query answering: clean framework, suitable semantics
- Query evaluation: hard

Incompleteness in theory and practice

Incompleteness in database systems

- Semantics of query answering: poorly designed
- Query evaluation: very efficient, optimized query engines

Theoretical framework for incompleteness [Imielinski-Lipski, Abiteboul-Kanellakis-Grahne, etc. 80's]

- Semantics of query answering: clean framework, suitable semantics
- Query evaluation: hard

Bridging the gap between theory and systems:

answer queries correctly, use classical query engines

not satisfactorily addressed even in the simplest data model

Plan

- ➡ Introduction
- Incomplete data model
- Querying incomplete data
 - the key to tractability: naïve evaluation
- What makes naïve evaluation work?
 - a general framework
- Applicability of the framework
- Moving forward

Incomplete relational data

Database schema (relational signature) σ : a set of relation symbols, with arities

eg σ ={ **Employee**, **Manager** } *arity*(Employee)=1, *arity*(Manager)=2

Incomplete database instance (naïve table) of schema σ [Imielinski, Lipski '84]: associates to each relation symbol R of σ a finite subset of (Const \cup Var)^{arity(R)}

Const : a countably infinite set of constants

Var : a countably infinite set of variables (nulls)

Complete instance: over Const

dom(I) : the subset of *Const* \cup *Var* occurring in I

Any incomplete database represents a set of complete databases (possible worlds)

Semantics of incompletness:

a function [] associating with each incomplete database a set of complete databases

Three well known relational semantics:

- OWA (Open World Assumption) [Imielinski-Lipski '84]
- CWA (Closed World Assumption) [Reiter '77, Imielinski-Lipski '84]
- WCWA (Weak Closed World Assumption) [Reiter '77]

• no missing tuples

Plan

- Introduction
- ➡ Incomplete data model
- Querying incomplete data
 - the key to tractability: naïve evaluation
- What makes naïve evaluation work?
 - a general framework
- Applicability of the framework
- Moving forward

Queries

Query over σ :

a mapping Q associating to each complete instance I of σ a relation over dom(I)

usually expressed in fragments of First Order logic (FO)

 $\varphi_{\mathbf{Q}}(\mathbf{x}) = \mathsf{Employee}(\mathbf{x}) \land \exists \mathbf{y} \mathsf{Manager}(\mathbf{x}, \mathbf{y})$

Queries

Boolean query over σ :

a mapping Q associating to each complete instance I of σ a value in {*true*, *false*}

Querying incomplete databases

Semantics of query answering: certain answers

Certain answers

ExampleQ : "There is a manager who has a manager" $\exists x, y, z$ ($Manager(x, y) \land Manager(z, x)$)

Computing certain answers

Need to use the available (incomplete) data

Computing certain answers on I : usually hard

from coNP-complete to undecidable for FO [Imielinski-Lipski '84, Abiteboul et al '91]

Naïve evaluation

Naïve evaluation

ExampleQ : "There is a manager who has a manager" $\exists x, y, z$ (Manager(x, y) \land Manager(z, x))

Green		Green	White		
White		White	Brown		
Brown		Green	Black		
•					
•					

Naïve evaluation

Example Q: "There is a manager who has a manager"

 $\exists x, y, z \ (\ Manager(x, y) \land \ Manager(z, x) \)$

Generalizing:

 $Q(I) = cert_Q(I)$ for all I

 \Rightarrow naïve evaluation works for Q

under CWA, OWA and WCWA

Naïve evaluation in theory and practice

Certain answers: an entailment problem (checking that I entails Q) HARD

Naïve evaluation: a model-checking problem (checking $I \models Q$) EFFICIENT

- PTIME in the size of the instance for FO queries
- based on classical query evaluation algorithms of database engines
- can benefit from query optimization techniques

Naïve evaluation works

correct query answering semantics, classical query evaluation algorithms /

entailment reduces to (straightforward) model-checking

clearly not always possible ! (undecidable vs. PTIME)

Naïve evaluation does not always work

cert_Q(I) = false under OWA and WCWA

 \Rightarrow naïve evaluation does not work for Q under OWA and WCWA

Plan

- ➡ Introduction
- ➡ Incomplete data model
- Querying incomplete data
 - the key to tractability: naïve evaluation
- What makes naïve evaluation work?
 - a general framework
- Applicability of the framework
- Moving forward

Relating naïve evaluation and syntactic fragments

A unified framework for relating naïve evaluation and syntactic fragments for several possible semantics:

Monotonicity and preservation

Shown in a very general setting subsuming every data model / semantics of incompleteness

(even beyond relational databases)

Naïve evaluation and monotonicity

Database domain: a quadruple $\langle \mathcal{D}, \mathcal{C}, [[]], \approx \rangle$

	description	example
\mathcal{D} : a set	database objects (complete and incomplete)	all naïve tables over a fixed schema σ
${m {\it C}}$: a subset of ${\cal D}$	complete database objects	all complete instances over σ
$\llbracket \exists : \mathcal{D} \to 2^C$	semantics of incompleteness	[]]owa,[]]cwa,etc.
≈ : an equivalence relation on $\mathcal D$	equivalence of objects (w.r.t. queries)	isomorphism of relational instances

Boolean query: $Q : \mathcal{D} \rightarrow \{true, false\}$

generic: $x \approx y$ implies Q(x)=Q(y)

monotone w.r.t. [] : $y \in [x]$ implies $Q(x) \Rightarrow Q(y)$

Naïve evaluation and monotonicity

Over a saturated database domain, if Q is a generic Boolean query:

Naïve evaluation works for Q iff Q is monotone w.r.t. []

Saturation property for $\langle \mathcal{D}, \mathcal{C}, [[]], \approx \rangle$:

For all $x \in \mathcal{D}$ there exists $y \in \llbracket x \rrbracket$ $y \approx x$

holds for most common semantics

Monotonicity and preservation

Monotonicity and preservation

homomorphism $D \rightarrow D'$: a mapping $h: dom(D) \rightarrow dom(D')$ s.t. $h(D) \subseteq D'$

Q preserved under homomorphism:

 $D \rightarrow D'$ implies $Q(D) \Rightarrow Q(D')$ for all D

Many variants: onto homomorphism, strong onto homomorphism, ...

monotonicity w.r.t different semantics \leftrightarrow

preservation under different notions of homomorphism

Preservation and syntactic fragments

Preservation theorems

- syntactic characterizations of preservation properties of queries in a given logic
- classical results in (finite) model theory

Preservation and syntactic fragments

Homomorphism Preservation Theorem: over arbitrary structures an FO query Q is preserved under homomorphism iff Q is in \exists Pos

recently proved over finite structures [Rossman '08]

\exists Pos: \{\exists, \land, \lor\}\-FO (Unions of Conjunctive Queries)
Preservation and syntactic fragments

Homomorphism Preservation Theorem: over arbitrary structures an FO query Q is preserved under homomorphism iff Q is in \exists Pos

recently proved over finite structures [Rossman '08]

\exists Pos: \{\exists, \land, \lor\}-FO (Unions of Conjunctive Queries)

Lyndon Positivity Theorem [Lyndon '59]: over arbitrary structures an FO query Q is preserved under onto homomorphism iff Q is in Pos

fails in the finite [Ajtai-Gurevich 87, Rosen '95, Stolboushkin '95]

Pos: $\{\exists, \forall, \land, \lor\}$ -FO

Preservation and syntactic fragments

Preservation theorems:

(Syntax \Rightarrow Preservation) holds in the finite as well

 \Rightarrow classes of queries where naïve evaluation works

Naïve evaluation and syntactic fragments

Three well known semantics as instances of our framework

Naïve evaluation works under:

Examples revisited

Q: "There is a manager who has a manager"

 $\exists x, y, z \ (\ Manager(x, y) \land \ Manager(z, x) \)$

 \Rightarrow naïve evaluation works for Q under CWA OWA, WCWA

Examples revisited

a very natural fragment

Naïve evaluation works well beyond 3Pos under other semantics than OWA

Plan

- ➡ Introduction
- ➡ Incomplete data model
- Querying incomplete data
 - the key to tractability: naïve evaluation
- What makes naïve evaluation work?
 - a general framework
- Applicability of the framework
- Moving forward

Beyond OWA, CWA and WCWA

Semantics of incompleteness have been considered in several contexts:

programming semantics, logic programming, data exchange,...

[Minker'82, Ohori'90, Rounds'91, Libkin'95, Hernich'11]

- powerset semantics
- minimal semantics

Beyond OWA, CWA and WCWA

Beyond the relational data model

XML: hierarchically structured data

modeled as trees with data values associated to nodes

Beyond the relational data model

Incomplete XML based on a form of "tree patterns" [Barcelo-Libkin-Poggi-S.'10]

- missing data values
- missing nodes
- missing structural information
 - ✓ labels
 - ✓ parent-child, next-sibling relationships
 - √ etc.

Tree-pattern-queries: the analog of $\exists Pos$ on trees

Beyond the relational data model

The analog of naïve evaluation works for tree-pattern-queries under OWA on rigid tree patterns [Barcelo-Libkin-Poggi-S.'10]

rigidity: essentially avoids structural incompleteness

Our framework explains this result:

- database domain:
 - \checkmark the set of complete/incomplete trees,
 - ✓ OWA semantics: homomorphism-based
- tree pattern queries are preserved under homomorphisms of trees
- rigidity ensures the saturation property

Moving forward

Naïve evaluation on combinations of data models/semantics, e.g

- → XML/CWA
- graph-structured data
- Query languages beyond FO
 - ➡ fixed-point logics, fragments of SO, etc.

Naïve evaluation over restricted instances

Applications: data integration/exchange

Beyond naïve-evaluation

 rewriting of the query/instance (classical in ontology-based query answering)

Thank you!

Real life paradoxes

- SQL adopts a three-valued logic
 - essentially any comparison involving null values evaluates to unknown
- An SQL condition checking $X Y \neq \emptyset$

EXISTS (SELECT X.A FROM X WHERE X.A NOT IN (SELECT Y.A FROM Y))

- X.A = {1, 2, 3, ..., N} and Y.A = {null}, then $X Y = \emptyset$ no matter what N is!
- That's how SQL programs work: this is part of the SQL 1999 ANSI Standard

Homomorphisms

Homomorphism $D \rightarrow D'$: a mapping $h: dom(D) \rightarrow dom(D')$ s.t. $h(D) \subseteq D'$

Onto homomorphism $D \rightarrow D'$: a homomorphism $h: D \rightarrow D'$ s.t. h(dom(D)) = dom(D')

Strong onto homomorphism $D \rightarrow D'$: a homomorphism $h: D \rightarrow D'$ s.t. h(D) = D'

Homomorphisms

• Union of strong onto homomorphisms $D \rightarrow D'$: $U_i h_i (D) = D'$

- D-minimal homomorphism h on D : there exists no h', preserving all constants preserved by h, s.t. $h'(D) \subseteq h(D)$
- Union of minimal homomorphisms $D \rightarrow D'$: $U_i h_i(D) = D'$ with $h_1...h_n$ D-minimal and preserving the same constants

- Essentially based on two steps: 1) valuation of nulls 2) extension of the instance
- Other well-known semantics follow the same paradigm:

- Essentially based on two steps: 1) valuation of nulls 2) extension of the instance
- Other well-known semantics follow the same paradigm:

Weak Closed World Assumption [Reiter 77]

Can be generalized to arbitrary semantic relations...

Monotonicity and preservation

- R-homomorphism $D \rightarrow D'$ (D and D' complete): a mapping h over dom(D) s.t. h(D) R D'
- R-homomorphisms "mimic" the semantic mapping:

- except that valuations distinguish constants from nulls
 - However, using query genericity:

If a relational semantics $[\![\]\!]$ is given by R and Q is a generic Boolean query

Q is monotone w.r.t. [[]] iff

Q is preserved under R-homomorphisms

Naïve evaluation and preservation

Combining the two steps:

If a relational semantics is given by R, the saturation property holds:

v^{*}: distinct nulls to distinct constants not occurring in D

Naïve evaluation and preservation

Theorem

If a relational semantics is given by R and Q is a generic Boolean query

Naïve evaluation works for Q iff Q is preserved under R-homomorphisms

	R	R-homomorphism
OWA	U	homomorphisms
CWA	II	strong onto homomorphisms (i.e. homomorphisms D →h(D))
WCWA	⊆ =domain	onto homomorphisms

Preservation and syntactic fragments of FO

- What about strong onto homomorphisms ?
 - There is a preservation result in the infinite [Keisler '65]
 - complex syntactic restrictions, one binary relation only, problematic to extend...
- A new sufficient condition for preservation, with a good syntax:

Positive fragment with Universal Guards ($Pos+\forall G$)

$$\begin{split} \varphi &:= \top \mid \perp \mid \mathsf{R}(\bar{\mathsf{x}}) \mid \mathsf{x} = \mathsf{y} \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \exists \mathsf{x}\varphi \mid \forall \mathsf{x}\varphi \mid \\ & \left(\begin{array}{c} \forall \bar{\mathsf{x}} \mid \mathsf{G}(\bar{\mathsf{x}}) \rightarrow \varphi \right) & \text{with} \\ & \mathsf{G} : \mathsf{a} \text{ relation or equality symbol} \\ & \bar{x} : \mathsf{a} \text{ tuple of distinct variables} \end{array} \right]$$

Pos+∀G formulas are preserved under strong onto homomorphisms

Semantics arising from orderings

• Information ordering of Codd tuples :

 $t \sqsubseteq t'$ if t[i] constant $\Rightarrow t'[i] = t[i]$ t' is "more informative" than t

- Lifting to sets of tuples [Hoare, Plotkin 70s]
 - $D \sqsubseteq^{H} D' : \forall t \in D \quad \exists t' \in D' \quad t \sqsubseteq t'$ (Hoare ordering, open-world)
 - $D \sqsubseteq^{P} D'$: $D \sqsubseteq^{H} D'$ and $\forall t' \in D'$ $\exists t \in D$ $t \sqsubseteq t'$ (Plotkin ordering)

Semantics arising from orderings

 $D \sqsubseteq^{H} D' : \forall t \in D \quad \exists t' \in D' \quad t \sqsubseteq t' \quad (\text{Hoare ordering, open-world})$ $D \sqsubseteq^{P} D' : D \sqsubseteq^{H} D' \text{ and } \forall t \in D' \quad \exists t \in D \quad t \sqsubseteq t' \quad (\text{Plotkin ordering})$

• Orderings give rise to semantics of Codd databases:

 $\llbracket D \rrbracket = \{ \text{ complete } D' \mid D \sqsubseteq D' \}$

• Observe that Plotkin semantics is more "open" than CWA :

Powerset semantics

• Extend (and generalize) Plotkin semantics to naïve databases

Powerset CWA $D' \in (D)_{CWA}$ iff \exists valuations $v_1, ... v_n$ $D' = U_i v_i (D)$

- When restricting to Codd databases Powerset CWA coincides with Plotkin
- Gives rise to a whole new class of semantics: \cup is replaced by any suitable relation

$$\mathbf{R} \subseteq \mathbf{2}^C \times C$$

Naïve evaluation for powerset semantics

- Naïve evaluation \leftrightarrow Monotonicity \leftrightarrow Preservation continues to hold
- Under the powerset CWA the needed notion is preservation under unions of strong onto homomorphisms (i.e. homomorphisms $D \rightarrow \bigcup_{i=1}^{n} h_i(D)$)
- We have similar results for powerset semantics based on arbitrary ${\bf R}$
- An FO fragment preserved under unions of strong onto homomorphisms: $\exists Pos + \forall G^{bool}$:

 $\exists Pos extended with universal guarded sentences \quad \forall \bar{x} \ (\ G(\bar{x}) \rightarrow \varphi(\bar{x}) \)$

Corollary

If Q is a Boolean query from $\exists Pos + \forall G^{bool}$

Naïve evaluation works for Q under ()-)CWA

- Naïve evaluation works for Q_1 and Q_2 under $(\cdot)_{CWA} \leftarrow Q_1, Q_2 \in \exists Pos + \forall G^{bool}$
- Naïve evaluation does not work for Q under the $(\cdot)_{CWA} \Rightarrow Q \notin \exists Pos + \forall G^{bool}$

Minimal semantics

- A special form of powerset semantics was introduced in the field of deductive databases (GCWA [Minker '82])
- Later modified and adopted as *data* exchange semantics (GCWA* [Hernich'11])
- We define it here for arbitrary incomplete instances:

A valuation v on D is D-minimal if there is no valuation v' s.t. $v'(D) \subseteq v(D)$

Minimal powerset semantics: U is replaced by any suitable relation $\mathbf{R} \subseteq 2^C \times C$
Minimal semantics and the core

• Not all valuations are minimal:

 $\perp, \perp'=a$ is minimal

• true also if D is a core

- but if v is a minimal valuation v(D) = v(core(D))
- There are other important connections between minimal semantics and the core (later)

Core of D

substructure D' of D such that $D \rightarrow D'$ and there is no D" \subseteq D' s.t. $D \rightarrow D$ "

 $(\rightarrow: homomorphism preserving constants)$

Minimal semantics and the saturation property

Saturation property for $\langle \mathcal{D}, \mathcal{C}, [[]], \approx \rangle$: For all $x \in \mathcal{D}$ there exists $y \in [[x]]$ $y \approx x$

Under the minimal Powerset CWA the saturation property does not hold

• all D-minimal images are of the form

• No union of D-minimal images can be isomorphic to D

The saturation property revisited

 $\llbracket \mathcal{X}(\mathsf{x}) \rrbracket = \llbracket \mathsf{x} \rrbracket$

 $\mathbf{x} = \frac{1}{2} \left(\mathbf{y} \approx \mathcal{X}(\mathbf{x}) \right)$

 $\langle \mathcal{D}, \mathcal{C}, [\![]\!], \approx \rangle$ has a saturated subdomain if $\exists S$ with $\mathcal{C} \subseteq S \subseteq \mathcal{D}$

and a function $X : \mathcal{D} \to S$ (the *representative* function) s.t.

- $\langle S, C, [[]], \approx \rangle$ is saturated
- $\llbracket X(x) \rrbracket = \llbracket x \rrbracket$ for all $x \in \mathcal{D}$

Proposition

If a database domain has a saturated subdomain with representative function X and Q is a generic Boolean query

 $X(\mathbf{x}) \in S$

Naïve evaluation works for Q iff Q is monotone w.r.t. [] and Q(x) = Q(X(x)) for all x

Lemma: Under the minimal powerset CWA the set of cores is a saturated subdomain with representative function $core(\cdot)$

Monotonicity and preservation for minimal semantics

Monotonicity under minimal powerset CWA is

preservation under the mapping

- Query genericity used with care:
 - valuations are indistinguishable from homomorphisms, however
 - v₁, ...v_n are minimal w.r.t all other valuations (not all arbitrary homomorphisms)
 - v₁, ...v_n preserve the same elements of D

Naïve evaluation and preservation for minimal semantics

The right notion of preservation:

- D-minimal homomorphism h:
 there exists no h', preserving all constants preserved by h, s.t. h'(D) ⊊ h(D)
- Unions of minimal homomorphisms: homomorphisms $D \rightarrow \bigcup_{i=1}^{n} h_i(D)$

with $h_1...h_n$ D-minimal and preserving the same constants

Theorem If Q is a generic Boolean query

Naïve evaluation works for Q under the minimal powerset CWA iff Q is preserved under unions of minimal homomorphisms and Q(D)=Q(core(D)) for every database D

Similar results hold for arbitrary minimal semantics

Preservation and syntactic fragments for minimal semantics

- Preservation under unions of minimal homomorphisms : no "tight" syntactic fragment known
- Remark: unions of minimal homomorphisms are also unions of strong onto homomorphisms

If Q is a Boolean query from $\exists Pos + \forall G^{bool}$, under the minimal powerset CWA:

- Naïve evaluation works for Q iff Q(D) = Q(core(D)) for every D
- Naïve evaluation works over cores

Preservation and syntactic fragments for minimal semantics

- Preservation under unions of minimal homomorphisms : no "tight" syntactic fragment known
- Remark: unions of minimal homomorphisms are also unions of strong onto homomorphisms

If Q is a Boolean query from $\exists Pos + \forall G^{bool}$, under the minimal powerset CWA:

- Naïve evaluation works for Q iff Q(D) = Q(core(D)) for every D
- Naïve evaluation works over cores

 $Q \in \exists Pos + \forall G^{bool}$ but naïve evaluation does not work

Non-Boolean queries

All results can be lifted to non-boolean relational queries. For a k-ary query Q:

- Define a new database domain whose elements are pairs (D, t)
 D: a relational database t: a k-tuple of constants
- Define a boolean query Q^* s.t. $Q^*(D,t)$ =true iff $t \in Q(D)$
- Apply previous results to Q^{*} and the new database domain ⇒ derive results for Q over the original relational database domain

For k-ary FO queries, $k \ge 0$	
Semantics	Naïve evaluation works for
OWA	JPos
WCWA	Pos
CWA	Pos+∀G
Powerset CWA	∃Pos+∀G ^{bool}
Min Powerset CWA	$\exists Pos + \forall G^{bool} \text{ iff } Q(D) = Q(core(D))$