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Exploration of unknown environment

We enter an unknown cave.
Initially – no knowledge about
the cave.

When we walk in the tunnels we
learn about its topology.
We explore more – we learn
more.
We want to explore the whole
cave.
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Parallel exploration

Can we explore the environment
efficiently (quickly) if we have
multiple walkers (agents) walking in
parallel?

We can explore multiple tunnels
at the same time.
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Graph exploration

We can model cave as a graph:
n – number of nodes.
m – number of edges (tunnels).
D – distance from the start to the furthest node.

Team of agents
k – number of agents. All agents start in node r .
Agents are moving in parallel.
Traversal of one edge takes one time step. If we want to model a
longer tunnel we can use multiple edges.

Lower bound
Time D is needed because some walker has to go to the furthest node.

Goal
We can use many agents but we want to explore in time close to D.
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Naïve approaches
i-th level of the graph – all nodes at distance i from r .
Naïve approach 1: Flooding
Straightforward algorithm to explore in time D using Θ(∆D) agents
(∆ - maximum degree):
In i-th step each node at level i splits evenly all its agents to its
neighbours at level i + 1.

D = 4
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Smart flooding

Unrealistic assumptions
Assume that the walkers can communicate. Lets say that they have a
common knowledge about the progress of exploration.
Assume that the graph is a tree (no cycles).

Algorithm
Release the walkers in groups
from the root.
At each node split the agents
proportionally to the number of
open unexplored tunnels.
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Smart flooding

Theorem
The algorithm explores in time O(D), using Dnc agents (for any c > 1).

Dnc is still a lot of agents but at least it is polynomial in n.

Both unrealistic assumptions can be dropped:
We can explore any graph using smart flooding.
We can do it using only local communication.
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Other ways to achieve parallelization: Random walks

Random walks
Multiple indepenent random walks starting from the same position.

Easy to implement: no memory needed.
It is still an open problem if any parallelization is guaranteed.
Poor parallelization on some graphs (e.g., path).

Grids
O(D2) is possible using polynomial number of agents.
To get time O(D), we need exponential.
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Other ways to achieve parallelization: Fair strategies

Fair strategies
Each node is sending (cumulatively over time) the same (+/ − 1)
number of agents in every direction.

Similar to random walks on many graphs.
log k-times faster exploration is guaranteed.
Similarly as for the random walks we need exponential number of
agents to explore grids in O(D).
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Conclusions

Smart flooding explores any graph in time O(D) using polynomial
number of agents.
Random walks and fair strategies can also be used for parallel
exploration but to explore all graphs in O(D) exponential number of
agents is needed.
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Thank You!


