F*: a general purpose language for program
verification

Chantal Keller
Joint work with lots of people

February, 2" 2015

o, A
. Microsoft+
) Research

F*: a general purpose language for program verification Chantal Keller

F*
®000000

Trust automatic devices

Pas mal, hein!ce machin-/ld.. .]

F*: a general purpose language for program verification Chantal Keller

F*
®000000

Trust automatic devices

Pas mal, hein!ce machin-/ld.. .]

F*: a general purpose language for program verification Chantal Keller

F*
[e] Je]e]e]e]e)

A machine to certify other machines

N\

F*: a general purpose language for program verification Chantal Keller

F*
[e] Je]e]e]e]e)

A machine to certify other machines

lzz’r///Vl////Mr‘iM{\\\\\\\\\\\\\\\»

F*: a general purpose language for program verification Chantal Keller

F*
[e]e] Jele]ele)

Main goal

To build and deploy systems that are provably secure, end-to-end

m an ML-like programming language

m more expressive type system, that allows to express arbitrary
properties about programs

m automatic proof of these properties

m fully-abstract code generation and deployment to various
platforms

F*: a general purpose language for program verification Chantal Keller

F*
[e]e] Jele]ele)

Main goal

To build and deploy systems that are provably secure, end-to-end

m an ML-like programming language

higher-order, stateful, non-terminating programs, polymorphism, datatypes, ...

m more expressive type system, that allows to express arbitrary
properties about programs

m automatic proof of these properties

m fully-abstract code generation and deployment to various
platforms

F*: a general purpose language for program verification Chantal Keller

F*
[e]e] Jele]ele)

Main goal

To build and deploy systems that are provably secure, end-to-end

m an ML-like programming language
higher-order, stateful, non-terminating programs, polymorphism, datatypes, ...
m more expressive type system, that allows to express arbitrary
properties about programs

functional correctness, policies, . ..

m automatic proof of these properties

m fully-abstract code generation and deployment to various
platforms

F*: a general purpose language for program verification Chantal Keller

F*
[e]e] Jele]ele)

Main goal

To build and deploy systems that are provably secure, end-to-end

m an ML-like programming language
higher-order, stateful, non-terminating programs, polymorphism, datatypes, ...
m more expressive type system, that allows to express arbitrary
properties about programs
functional correctness, policies, . ..
m automatic proof of these properties
verification condition generation discharged by SMT solvers
m fully-abstract code generation and deployment to various
platforms

F*: a general purpose language for program verification Chantal Keller

F*
[e]e] Jele]ele)

Main goal

To build and deploy systems that are provably secure, end-to-end

m an ML-like programming language
higher-order, stateful, non-terminating programs, polymorphism, datatypes, ...
m more expressive type system, that allows to express arbitrary
properties about programs
functional correctness, policies, . ..
m automatic proof of these properties
verification condition generation discharged by SMT solvers
m fully-abstract code generation and deployment to various
platforms
OCaml, JavaScript, F#, ...

F*: a general purpose language for program verification Chantal Keller

F*
[e]e]e] le]ele)

Examples

val f: int — int

let fx=x+1

*: a general purpose language for program verificati Chantal Keller

F*
[e]e]e] le]ele)

Examples

val f: x:int — y:int{y > x}
let fx=x+1

*: a general purpose language for program verificati Chantal Keller

F*
[e]e]e] le]ele)

Examples

val f: x:int — y:int{y > x}
let fx=x+1

val quickSort: f:(a — a — Tot bool){total order a f}
— l:list a
— Tot (m:list a{sorted f m A V x, count x | = count x m})

let rec quickSort f = ...

a general purpose language for program verification Chantal Keller

F*
[e]e]e] le]ele)

Examples

val f: x:int — y:int{y > x}
let fx=x+1

val quickSort: f:(a — a — Tot bool){total order a f}
— l:list a
— Tot (m:list a{sorted f m A V x, count x | = count x m})

let rec quickSort f = ...

val counter: unit — ST (x:int{x > 0})
let counter =
let ¢ = ref (—1)in

fun () —» c:=1c+1; lc

a general purpose language for program verification Chantal Keller

F*
[e]e]e] le]ele)

Examples

val f: x:int — y:int{y > x}
let fx=x+1

val quickSort: f:(a — a — Tot bool){total order a f}
— L:list a
— Tot (m:list a{sorted f m A V x, count x | = count x m})

let rec quickSort f = ...

val counter: unit — ST (x:int{x > 0})
let counter =
let ¢ = ref (—1)in

fun () —» c:=1c+1; lc

— static and complete verification

F*: a general purpose language for program verification Chantal Keller

F*
[e]e]e]e] Jele)

More concrete example: policies

On the server side:
let canRead (d:directory) =

canWrite d || d="/public "

let canWrite (d: directory) =
d = "/tmp”

assume val read : f:filename{canRead (dir f)} — string

assume val write : f:filename{canWrite (dir f)} — string — unit

F*: a general purpose language for program verification Chantal Keller

F*
[e]e]e]e] Jele)

More concrete example: policies

On the server side:
let canWrite (d: directory) = let canRead (d:directory) =
d="/tmp" canWrite d || d="'/public

assume val read : f:filename{canRead (dir f)} — string

assume val write : f:filename{canWrite (dir f)} — string — unit

On the client side:
let niceClient () = let evilClient () =
let vl = read “/tmp/foo.txt’ in

let v2 = read ‘‘/ public /readme’” in

write ‘‘/tmp/bar.txt” ‘“ hello 1"

let vl = read '/ etc/passwd’ in

write “‘/tmp/bar.txt” ‘“ha ha!”

F*: a general purpose language for program verification

Chantal Keller

F*
[e]e]e]e]e] lo)

Deductive verification in F*

program

4 steps:

F*: a general purpose language for program verification Chantal Keller 7/8

F*
[e]e]e]e]e] lo)

Deductive verification in F*

annotated program

4 steps:

annotations: mathematical specifications

F*: a general purpose language for program verification Chantal Keller

F*
[e]e]e]e]e] lo)

Deductive verification in F*

annotated program

proof obligations

4 steps:

annotations: mathematical specifications

automatic generation of proof obligations

F*: a general purpose language for program verification Chantal Keller

F*
[e]e]e]e]e] lo)

Deductive verification in F*

annotated program

proof obligations

4 steps:

annotations: mathematical specifications
automatic generation of proof obligations

automatic proof of them

F*: a general purpose language for program verification Chantal Keller

F*
[e]e]e]e]e] lo)

Deductive verification in F*

annotated program

OCaml
———code ¢ JavaScript
F

proof obligations

4 steps:

annotations: mathematical specifications
automatic generation of proof obligations
automatic proof of them

automatic code generation for deployment

F*: a general purpose language for program verification Chantal Keller

F*
[e]e]e]e]le]e])

Conclusion

Real-world examples

m miTLS: certification of the TLS protocol

m correctness of the F* type-checker itself

< relies on the fact that F* is a general-purpose language

F*: a general purpose language for program verification Chantal Keller

F*
[e]e]e]e]le]e])

Conclusion

Real-world examples

m miTLS: certification of the TLS protocol

m correctness of the F* type-checker itself

<> relies on the fact that F* is a general-purpose language

F*: a general purpose language for program verification Chantal Keller

