
F*

F*: a general purpose language for program

veri�cation

Chantal Keller

Joint work with lots of people

February, 2nd 2015

F*: a general purpose language for program veri�cation Chantal Keller 1 / 8

F*

Trust automatic devices

F*: a general purpose language for program veri�cation Chantal Keller 2 / 8

F*

Trust automatic devices

F*: a general purpose language for program veri�cation Chantal Keller 2 / 8

F*

A machine to certify other machines

F*: a general purpose language for program veri�cation Chantal Keller 3 / 8

P = NP

P = NP

F*

A machine to certify other machines

F*: a general purpose language for program veri�cation Chantal Keller 3 / 8

P = NPP = NP

F*

Main goal

To build and deploy systems that are provably secure, end-to-end

an ML-like programming language

higher-order, stateful, non-terminating programs, polymorphism, datatypes, . . .

more expressive type system, that allows to express arbitrary

properties about programs

functional correctness, policies, . . .

automatic proof of these properties

veri�cation condition generation discharged by SMT solvers

fully-abstract code generation and deployment to various

platforms

OCaml, JavaScript, F#, . . .

F*: a general purpose language for program veri�cation Chantal Keller 4 / 8

F*

Main goal

To build and deploy systems that are provably secure, end-to-end

an ML-like programming language

higher-order, stateful, non-terminating programs, polymorphism, datatypes, . . .

more expressive type system, that allows to express arbitrary

properties about programs

functional correctness, policies, . . .

automatic proof of these properties

veri�cation condition generation discharged by SMT solvers

fully-abstract code generation and deployment to various

platforms

OCaml, JavaScript, F#, . . .

F*: a general purpose language for program veri�cation Chantal Keller 4 / 8

F*

Main goal

To build and deploy systems that are provably secure, end-to-end

an ML-like programming language

higher-order, stateful, non-terminating programs, polymorphism, datatypes, . . .

more expressive type system, that allows to express arbitrary

properties about programs

functional correctness, policies, . . .

automatic proof of these properties

veri�cation condition generation discharged by SMT solvers

fully-abstract code generation and deployment to various

platforms

OCaml, JavaScript, F#, . . .

F*: a general purpose language for program veri�cation Chantal Keller 4 / 8

F*

Main goal

To build and deploy systems that are provably secure, end-to-end

an ML-like programming language

higher-order, stateful, non-terminating programs, polymorphism, datatypes, . . .

more expressive type system, that allows to express arbitrary

properties about programs

functional correctness, policies, . . .

automatic proof of these properties

veri�cation condition generation discharged by SMT solvers

fully-abstract code generation and deployment to various

platforms

OCaml, JavaScript, F#, . . .

F*: a general purpose language for program veri�cation Chantal Keller 4 / 8

F*

Main goal

To build and deploy systems that are provably secure, end-to-end

an ML-like programming language

higher-order, stateful, non-terminating programs, polymorphism, datatypes, . . .

more expressive type system, that allows to express arbitrary

properties about programs

functional correctness, policies, . . .

automatic proof of these properties

veri�cation condition generation discharged by SMT solvers

fully-abstract code generation and deployment to various

platforms

OCaml, JavaScript, F#, . . .

F*: a general purpose language for program veri�cation Chantal Keller 4 / 8

F*

Examples

val f : int → int{y > x}

let f x = x + 1

val quickSort : f :(a → a → Tot bool){total_order a f}

→ l:list a

→ Tot (m:list a{sorted f m ∧ ∀ x, count x l = count x m})

let rec quickSort f = ...

val counter: unit → ST (x:int{x > 0})

let counter =

let c = ref (−1) in

fun () → c := !c+1; !c

↪→ static and complete veri�cation

F*: a general purpose language for program veri�cation Chantal Keller 5 / 8

F*

Examples

val f : x: int → y:int{y > x}

let f x = x + 1

val quickSort : f :(a → a → Tot bool){total_order a f}

→ l:list a

→ Tot (m:list a{sorted f m ∧ ∀ x, count x l = count x m})

let rec quickSort f = ...

val counter: unit → ST (x:int{x > 0})

let counter =

let c = ref (−1) in

fun () → c := !c+1; !c

↪→ static and complete veri�cation

F*: a general purpose language for program veri�cation Chantal Keller 5 / 8

F*

Examples

val f : x: int → y:int{y > x}

let f x = x + 1

val quickSort : f :(a → a → Tot bool){total_order a f}

→ l:list a

→ Tot (m:list a{sorted f m ∧ ∀ x, count x l = count x m})

let rec quickSort f = ...

val counter: unit → ST (x:int{x > 0})

let counter =

let c = ref (−1) in

fun () → c := !c+1; !c

↪→ static and complete veri�cation

F*: a general purpose language for program veri�cation Chantal Keller 5 / 8

F*

Examples

val f : x: int → y:int{y > x}

let f x = x + 1

val quickSort : f :(a → a → Tot bool){total_order a f}

→ l:list a

→ Tot (m:list a{sorted f m ∧ ∀ x, count x l = count x m})

let rec quickSort f = ...

val counter: unit → ST (x:int{x > 0})

let counter =

let c = ref (−1) in

fun () → c := !c+1; !c

↪→ static and complete veri�cation

F*: a general purpose language for program veri�cation Chantal Keller 5 / 8

F*

Examples

val f : x: int → y:int{y > x}

let f x = x + 1

val quickSort : f :(a → a → Tot bool){total_order a f}

→ l:list a

→ Tot (m:list a{sorted f m ∧ ∀ x, count x l = count x m})

let rec quickSort f = ...

val counter: unit → ST (x:int{x > 0})

let counter =

let c = ref (−1) in

fun () → c := !c+1; !c

↪→ static and complete veri�cation

F*: a general purpose language for program veri�cation Chantal Keller 5 / 8

F*

More concrete example: policies

On the server side:

let canWrite (d: directory) =

d = ``/tmp''

let canRead (d: directory) =

canWrite d || d=``/public ''

assume val read : f : �lename{canRead (dir f)} → string

assume val write : f : �lename{canWrite (dir f)} → string → unit

On the client side:

let niceClient () =

let v1 = read ``/tmp/foo.txt '' in

let v2 = read ``/ public/readme'' in

write ``/ tmp/bar.txt '' `` hello !''

let evilClient () =

let v1 = read ``/ etc/passwd'' in

write ``/ tmp/bar.txt '' `` ha ha !''

F*: a general purpose language for program veri�cation Chantal Keller 6 / 8

F*

More concrete example: policies

On the server side:

let canWrite (d: directory) =

d = ``/tmp''

let canRead (d: directory) =

canWrite d || d=``/public ''

assume val read : f : �lename{canRead (dir f)} → string

assume val write : f : �lename{canWrite (dir f)} → string → unit

On the client side:

let niceClient () =

let v1 = read ``/tmp/foo.txt '' in

let v2 = read ``/ public/readme'' in

write ``/ tmp/bar.txt '' `` hello !''

let evilClient () =

let v1 = read ``/ etc/passwd'' in

write ``/ tmp/bar.txt '' `` ha ha !''

F*: a general purpose language for program veri�cation Chantal Keller 6 / 8

F*

Deductive veri�cation in F*
annotated program

Z3

code


OCaml
JavaScript
F#

4 steps:

1 annotations: mathematical speci�cations

2 automatic generation of proof obligations

3 automatic proof of them

4 automatic code generation for deployment

F*: a general purpose language for program veri�cation Chantal Keller 7 / 8

F*

Deductive veri�cation in F*
annotated program

Z3

code


OCaml
JavaScript
F#

4 steps:

1 annotations: mathematical speci�cations

2 automatic generation of proof obligations

3 automatic proof of them

4 automatic code generation for deployment

F*: a general purpose language for program veri�cation Chantal Keller 7 / 8

F*

Deductive veri�cation in F*
annotated program

F*

proof obligations

Z3

code


OCaml
JavaScript
F#

4 steps:

1 annotations: mathematical speci�cations

2 automatic generation of proof obligations

3 automatic proof of them

4 automatic code generation for deployment

F*: a general purpose language for program veri�cation Chantal Keller 7 / 8

F*

Deductive veri�cation in F*
annotated program

F*

proof obligations

Z3

code


OCaml
JavaScript
F#

4 steps:

1 annotations: mathematical speci�cations

2 automatic generation of proof obligations

3 automatic proof of them

4 automatic code generation for deployment

F*: a general purpose language for program veri�cation Chantal Keller 7 / 8

F*

Deductive veri�cation in F*
annotated program

F*

proof obligations

Z3

code


OCaml
JavaScript
F#

4 steps:

1 annotations: mathematical speci�cations

2 automatic generation of proof obligations

3 automatic proof of them

4 automatic code generation for deployment

F*: a general purpose language for program veri�cation Chantal Keller 7 / 8

F*

Conclusion

Real-world examples

miTLS: certi�cation of the TLS protocol

correctness of the F* type-checker itself

↪→ relies on the fact that F* is a general-purpose language

F*: a general purpose language for program veri�cation Chantal Keller 8 / 8

F*

Conclusion

Real-world examples

miTLS: certi�cation of the TLS protocol

correctness of the F* type-checker itself

↪→ relies on the fact that F* is a general-purpose language

F*: a general purpose language for program veri�cation Chantal Keller 8 / 8

