
Some tools for evaluating functions on a machine
in a certi�ed (yet e�cient!) way

Nicolas Brisebarre

Journées nationales du GDR IM 2015, 2/2/2015

-1-



A joint work!

AriC team, LIP

Nicolas Brisebarre, Sylvain Chevillard, Guillaume Hanrot, Mioara Jolde³,
Jean-Michel Muller, Arnaud Tisserand, Serge Torres

-2-



Computing

Huge focus on �High Performance Computing�

Security issues regarding the data, the computations, the results:
Cryptology

What about the accuracy and the reliability of these computations?
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Floating Point (FP) Arithmetic

Given  a radix β ≥ 2,
a precision n ≥ 1,
a set of exponents Emin · · ·Emax.

A �nite FP number x is represented by 2 integers:

integer mantissa M , βn−1 ≤ |M | ≤ βn − 1,

exponent E, Emin ≤ E ≤ Emax

such that

x =
M

βn−1
× βE .

We assume binary FP arithmetic (that is to say, β = 2).
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IEEE Precisions

See http://en.wikipedia.org/wiki/IEEE_floating_point or
(older)
http://babbage.cs.qc.edu/courses/cs341/IEEE-754references.html.

precision n min. exponent maximal exponent
Emin Emax

single (binary 32) 24 −126 127
double (binary 64) 53 −1022 1023
extended double 64 −16382 16383
quadruple (binary 128) 113 −16382 16383

We have x = M
2n−1 × 2E with 2n−1 ≤ |M | ≤ 2n − 1

and Emin ≤ E ≤ Emax.
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Various bugs

S. Rump's example (1988). Consider

f(a, b) = 333.75b6 + a2
(
11a2b2 − b6 − 121b4 − 2

)
+ 5.5b8 +

a

2b
,

and try to compute f(a, b) for a = 77617.0 and b = 33096.0. On an IBM
370 computer:

1.172603 in single precision;

1.1726039400531 in double precision;

1.172603940053178 in extended precision.

And yet, the exact result is −0.8273960599 · · · .
What about more recent systems? On a Pentium4 (gcc, Linux), Rump's
C program returns

5.960604× 1020 in single precision;

2.0317× 1029 in double precision;

−9.38724× 10−323 in extended precision.

-6-



Various bugs

S. Rump's example (1988). Consider

f(a, b) = 333.75b6 + a2
(
11a2b2 − b6 − 121b4 − 2

)
+ 5.5b8 +

a

2b
,

and try to compute f(a, b) for a = 77617.0 and b = 33096.0. On an IBM
370 computer:

1.172603 in single precision;

1.1726039400531 in double precision;

1.172603940053178 in extended precision.

And yet, the exact result is −0.8273960599 · · · .
What about more recent systems? On a Pentium4 (gcc, Linux), Rump's
C program returns

5.960604× 1020 in single precision;

2.0317× 1029 in double precision;

−9.38724× 10−323 in extended precision.

-6-



Various bugs

M. Jolde³. Rigorous Polynomial Approximations and Applications. PhD
thesis, ENS Lyon, 2011.

Let J =

∫ 3

0

sin

(
1

(10−3 + (1− x)2)3/2

)
dx.
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Maple18: 0.7499743685;

Pari/GP: 0.7927730971479080755;

Mathematica and Chebfun fail to answer;

Chen, '06: 0.7578918118.

WHAT IS THE CORRECT ANSWER?
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Various bugs

W. Tucker. Validated Numerics. Princeton University Press, 2011.

Let I =

∫ 8

0

sin(x+ ex)dx. Let's evaluate it using MATLAB.

fcn_str = 'sin(x+exp(x))';

f = vectorize(inline(fcn_str));

a = 0; b = 8;

>> q = quad(f,a,b)

q =

0.251102722027180

Actually, I ∈ [0.3474, 0.3475]...
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A statement by Alston Householder

�It makes me nervous to �y on airplanes since I know they are designed
using �oating-point arithmetic.� A. Householder

Well, the situation is not that tragic! There are some useful computations
that we can perform in a (sometimes fast and) certi�ed way.

Some of these results can even be used to establish rigorous mathematical
proofs (Tucker's proof of the existence of Lorentz attractor, Hales proof
of Kepler conjecture, Helfgott proof of the ternary Goldbach conjecture).
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Evaluation of Elementary Functions

exp, ln, cos, sin, arctan,
√

, . . .

Goal: evaluation of ϕ to a given accuracy η.

Step 0. Computation of hardest-to-round cases: V. Lefèvre and
J.-M. Muller.

Step 1. Argument reduction (Payne & Hanek, Ng, Daumas et al):
evaluation of a function ϕ over R or a subset of R is reduced to the
evaluation of a function f over [a, b].

Step 2. Computation of p?, a �machine-e�cient� polynomial
approximation of f .

Step 3. Computation of a rigorous approximation error ||f − p?||.
Step 4. Computation of a certi�ed evalutation error of p?: GAPPA
(G. Melquiond).
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Applications

Speci�c hardware implementations in low precision (∼ 15 bits).
Reduce the cost (time and silicon area) while keeping a correct
accuracy;

single or double IEEE precision software implementations. Get very
high accuracy while keeping the (time and memory) cost acceptable.
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Scienti�c Framework and Tools

Computer Arithmetic

Numerical Analysis, Approximation Theory, Interval Analysis,
Fine-tuned Implementation

Algorithmic Number Theory, Computer Algebra, Functional Analysis,
Complex Analysis, Logic, Formal Proof
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Two Key Problems

Quantization problem. When it comes to implementing a function or
a �lter, need for an (quasi-)optimal polynomial approximation or
transfer function. Issue: the coe�cients are machine numbers.

Rigorous approximation. Given f a solution of a linear ODE,
compute a pair (P,∆) where P is a polynomial and ∆ an interval
such that f − P takes all its values in ∆.
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Minimax Approximation

Reminder. Let g : [a, b]→ R, ||g||[a,b] = supa≤x≤b |g(x)|.
We denote Rn[X] = {p ∈ R[X]; deg p ≤ n}.

Minimax approximation: let f : [a, b]→ R, n ∈ N, we search for
p ∈ Rn[X] s.t.

||p− f ||[a,b] = inf
q∈Rn[X]

||q − f ||[a,b].

An algorithm due to Remez gives p (minimax function in Maple, also
available in Sollya http://sollya.gforge.inria.fr/).

Problem: we can't directly use minimax approx. in a computer since the
coe�cients of p can't be represented on a �nite number of bits.
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Approximation of the Function cos over [0, π/4] by a
Degree-3 Polynomial

Maple or Sollya tell us that the polynomial

p = 0.9998864206 + 0.00469021603x− 0.5303088665x2 + 0.06304636099x3

is ∼ the best approximant to cos. We have
ε = || cos−p||[0,π/4] = 0.0001135879....

We look for a0, a1, a2, a3 ∈ Z such that

max
0≤x≤π/4

∣∣∣cosx−
( a0

212
+

a1
210

x+
a2
26
x2 +

a3
24
x3
)∣∣∣

is minimal.

The naive approach gives the polynomial

p̂ =
212

212
+

5

210
x− 34

26
x2 +

1

24
x3.

We have ε̂ = || cos−p̂||[0,π/4] = 0.00069397....

-16-



Approximation of the Function cos over [0, π/4] by a
Degree-3 Polynomial

Maple or Sollya tell us that the polynomial

p = 0.9998864206 + 0.00469021603x− 0.5303088665x2 + 0.06304636099x3

is ∼ the best approximant to cos. We have
ε = || cos−p||[0,π/4] = 0.0001135879....

We look for a0, a1, a2, a3 ∈ Z such that

max
0≤x≤π/4

∣∣∣cosx−
( a0

212
+

a1
210

x+
a2
26
x2 +

a3
24
x3
)∣∣∣

is minimal.

The naive approach gives the polynomial

p̂ =
212

212
+

5

210
x− 34

26
x2 +

1

24
x3.

We have ε̂ = || cos−p̂||[0,π/4] = 0.00069397....

-16-



Approximation of the Function cos over [0, π/4] by a
Degree-3 Polynomial

Maple or Sollya computes a polynomial p which is ∼ the best
approximant to cos. We have ε = || cos−p||[0,π/4] = 0.0001135879....
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ε̂ = || cos−p̂||[0,π/4] = 0.00069397...

But the best �truncated�
approximant:

p? =
4095

212
+

6

210
x− 34

26
x2 +

1

24
x3

which gives || cos−p?||[0,π/4] = 0.0002441406250.

In this example, we gain − log2(0.35) ≈ 1.5 bits of accuracy.

-17-



Approximation of the Function cos over [0, π/4] by a
Degree-3 Polynomial

Maple or Sollya computes a polynomial p which is ∼ the best
approximant to cos. We have ε = || cos−p||[0,π/4] = 0.0001135879....
We look for a0, a1, a2, a3 ∈ Z such that

max
0≤x≤π/4

∣∣∣cosx−
( a0

212
+

a1
210

x+
a2
26
x2 +

a3
24
x3
)∣∣∣

is minimal.
The naive approach gives the polynomial p̂ and
ε̂ = || cos−p̂||[0,π/4] = 0.00069397... But the best �truncated�
approximant:

p? =
4095

212
+

6

210
x− 34

26
x2 +

1

24
x3

which gives || cos−p?||[0,π/4] = 0.0002441406250.

In this example, we gain − log2(0.35) ≈ 1.5 bits of accuracy.

-17-



An Approach based on Lattice Basis Reduction
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An Approach based on Lattice Basis Reduction

De�nition

Let L be a nonempty subset of Rd, L is a lattice i� there exists a set of

vectors b1, . . . , bk R-linearly independent such that

L = Z.b1 ⊕ · · · ⊕ Z.bk.

(b1, . . . , bk) is a basis of the lattice L.

Examples. Zd, every subgroup of Zd.
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Example: The Lattice Z(2, 0)⊕ Z(1, 2)

(0, 0) (2, 0)

(1, 2)
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Example: The Lattice Z(2, 0)⊕ Z(1, 2)

(0, 0) (2, 0)

(1, 2)

u

v−3u+ v

2u− v

SVP (Shortest Vector Problem) and CVP (Closest Vector Problem) are
NP-hard.
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Lenstra-Lenstra-Lovász Algorithm

SVP (Shortest Vector Problem) and CVP (Closest Vector Problem) are
NP-hard.
Factoring Polynomials with Rational Coe�cients, A. K. Lenstra, H. W.
Lenstra and L. Lovász, Math. Annalen 261, 515-534, 1982.

The LLL algorithm gives an approximate solution to SVP in polynomial
time.

Babai's algorithm (based on LLL) gives an approximate solution to CVP
in polynomial time.
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Absolute Error Problem

We search for (one of the) best(s) polynomial of the form

p? =
a?0

2m0
+

a?1
2m1

X + · · ·+ a?n
2mn

Xn

(where a?i ∈ Z and mi ∈ Z ) that minimizes ‖f − p‖[a, b].
Discretize the continuous problem: we choose x1, · · · , xd points in [a, b]

such that
a?0
2m0

+
a?1
2m1

xi + · · ·+ a?n
2mn x

n
i is as close as possible to f(xi) for

all i = 1, . . . , d.

Actually, this can be viewed as an instance of the Closest Vector Problem.

-23-



Absolute Error Problem

We search for (one of the) best(s) polynomial of the form

p? =
a?0

2m0
+

a?1
2m1

X + · · ·+ a?n
2mn

Xn

(where a?i ∈ Z and mi ∈ Z ) that minimizes ‖f − p‖[a, b].
Discretize the continuous problem: we choose x1, · · · , xd points in [a, b]

such that
a?0
2m0

+
a?1
2m1

xi + · · ·+ a?n
2mn x

n
i is as close as possible to f(xi) for

all i = 1, . . . , d.

Actually, this can be viewed as an instance of the Closest Vector Problem.

-23-



An Example from CRlibm

CRlibm is a library designed to compute correctly rounded functions
in an e�cient way (target : IEEE double precision).

http://lipforge.ens-lyon.fr/www/crlibm/

It uses speci�c formats such as double-double or triple-double.

Here is an example we worked on with C. Lauter, and which is used
to compute arcsin(x) on [0.79; 1].
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Arcsine Function

After argument reduction we have the problem to approximate

g(z) =
arcsin(1− (z +m))− π

2√
2 · (z +m)

where 0xBFBC28F800009107 ≤ z ≤ 0x3FBC28F7FFFF6EF1 (i.e.
approximately −0.110 ≤ z ≤ 0.110) and
m = 0x3FBC28F80000910F ' 0.110.
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Data

Target accuracy to achieve correct rounding : 2−119.
The minimax of degree 21 is su�cient (error = 2−119.83).
Each approximant is of the form

p0︸︷︷︸
t.d.

+ p1︸︷︷︸
t.d.

x+ p2︸︷︷︸
d.d.

x2 + · · ·︸︷︷︸
···

+ p9︸︷︷︸
d.d.

x9 + p10︸︷︷︸
d.

x10 + · · ·︸︷︷︸
···

+ p21︸︷︷︸
d.

x21

where the pi are either double precision numbers (d.), a sum of two
double precision numbers (d.d.), a sum of two double precision numbers
(t.d.).

Figure : binary logarithm of the absolute error of several approximants

Target -119

Minimax -119.83
Rounded minimax -103.31
Our polynomial -119.77
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Exact Minimax, Rounded Minimax, our Polynomial

We save 16 bits with our method.
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Evaluation of Elementary Functions

exp, ln, cos, sin, arctan,
√

, . . .

Goal: evaluation of ϕ to a given accuracy η.

Step 0. Computation of hardest-to-round cases: V. Lefèvre and
J.-M. Muller.

Step 1. Argument reduction (Payne & Hanek, Ng, Daumas et al):
evaluation of a function ϕ over R or a subset of R is reduced to the
evaluation of a function f over [a, b].

Step 2. Computation of p?, a �machine-e�cient� polynomial
approximation of f .

Step 3. Computation of a rigorous approximation error ||f − p?||.
Step 4. Computation of a certi�ed evalutation error of p?: GAPPA
(G. Melquiond).
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What Kind of Problems can we (CM) Address ?

Currently we consider univariate functions f , �su�ciently smooth� over
[a, b].

Practical Examples:

Computing supremum norms of approximation error functions:

sup
x∈[a, b]

{|f(x)− g(x)|},

where g is a very good approximation of f .

Rigorous quadrature:

J =

∫ 3

0

sin

(
1

(10−3 + (1− x)2)3/2

)
dx =?
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Interval Arithmetic (IA)

Each interval = pair of �oating-point numbers
(multiple precision IA libraries exist, e.g. MPFI1)

π ∈ [3.1415, 3.1416]

Interval Arithmetic Operations
Eg. [1, 2] + [−3, 2] = [−2, 4]

Range bounding for functions
Eg. x ∈ [−1, 2], f(x) = x2 − x+ 1
F (X) = X2 −X + 1
F ([−1, 2]) = [−1, 2]2 − [−1, 2] + [1, 1]
F ([−1, 2]) = [0, 4]− [−1, 2] + [1, 1]
F ([−1, 2]) = [−1, 6]

x ∈ [−1, 2], f(x) ∈ [−1, 6], but Im(f) = [3/4, 3]

1http://gforge.inria.fr/projects/mpfi/
-31-
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Rigorous Polynomial Approximations

f replaced with

a rigorous polynomial approximation : (T,∆)

- polynomial approximation T of degree n

- interval ∆ s. t. f(x)− T (x) ∈∆,∀x ∈ [a, b]

Main point: How to compute (T,∆) ?
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Rigorous Polynomial Approximations

(Straightforward) Idea: Consider Taylor approximations

Let n ∈ N, n+ 1 times di�erentiable function f over [a, b] around x0.

f(x) =

n∑
i=0

f (i)(x0)(x− x0)i

i!︸ ︷︷ ︸
T (x)

+ ∆n(x, ξ)︸ ︷︷ ︸
remainder

∆n(x, ξ) =
(x− x0)n+1

(n+ 1)!
f (n+1)(ξ), x ∈ [a, b], ξ lies strictly between

x and x0

How to compute the coe�cients
f (i)(x0)

i!
of T (x) ?

How to compute an interval enclosure ∆ for ∆n(x, ξ) ?
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Taylor Models

- Two-step procedure

R. Moore (1950') then M. Berz and K. Makino (1990').

Example: fcomp(x) = exp(sin(x) + cos(x))
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Taylor Model Philosophy

For bounding the remainders:

For �basic functions� use Lagrange formula.

For �composite functions� use a two-step procedure:
- compute models (T, I) for all basic functions;
- apply algebraic rules with these models, instead of operations with
the corresponding functions.
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Quick Reminder on Chebyshev Polynomials

Over [−1, 1], Tn(x) = cos (n arccosx) , n ≥ 0.

(Tn)n∈N: orthogonal basis for the scalar product

(f, g) =
2

π

1∫
−1

f(x)g(x)√
1− x2

dx.

Chebyshev nodes: n roots in [−1, 1] of Tn, i.e. xi = cos ((i+ 1/2)π/n) ,
i = 0, . . . , n− 1.
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Our Approach - Chebyshev Models

Basic idea:

- Use a polynomial approximation better than Taylor:

Chebyshev interpolation polynomial.

Chebyshev truncated series.

- Use again the two-step approach:

compute models (P, I) for basic functions;

apply algebraic rules with these models, instead of operations with
the corresponding functions.
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Chebyshev Models - Operations: Addition

Given two Chebyshev Models for f1 and f2, over [a, b], degree n:
f1(x)− P1(x) ∈∆1 and f2(x)− P2(x) ∈∆2, ∀x ∈ [a, b].

Addition
(P1,∆1) + (P2,∆2) = (P1 + P2,∆1 + ∆2).
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Chebyshev Models - Operations: Multiplication

Given two Chebyshev Models for f1 and f2, over [a, b], degree n:
f1(x)− P1(x) ∈∆1 and f2(x)− P2(x) ∈∆2, ∀x ∈ [a, b].

Multiplication
We need algebraic rule for: (P1,∆1) · (P2,∆2) = (P,∆) s.t.
f1(x) · f2(x)− P (x) ∈∆, ∀x ∈ [a, b]

f1(x) · f2(x) ∈ P1 · P2︸ ︷︷ ︸+P2 ·∆1 + P1 ·∆2 + ∆1 ·∆2︸ ︷︷ ︸
I2

.

(P1 · P2)0...n︸ ︷︷ ︸
P

+ (P1 · P2)n+1...2n︸ ︷︷ ︸
I1

∆ = I1 + I2

In our case, for bounding �P s�: P = p0 +
n∑
i=1

pi · [−1, 1].
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Chebyshev Models - Operations: Composition

Given CMs for f1 over [c, d], for f2 over [a, b], degree n:
f1(y)− P1(y) ∈∆1, ∀y ∈ [c, d] and f2(x)− P2(x) ∈∆2, ∀x ∈ [a, b].

Remark: (f1 ◦ f2)(x) is f1 evaluated at y = f2(x).
We need: f2([a, b]) ⊆ [c, d], checked by P2 + ∆2 ⊆ [c, d]

f1(f2(x)) ∈ P1(P2(x) + ∆2) + ∆1

Extract polynomial and remainder: P1 can be evaluated using only
additions and multiplications: Clenshaw's algorithm
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Various bugs

M. Jolde³. Rigorous Polynomial Approximations and Applications. PhD
thesis, ENS Lyon, 2011.

Let J =

∫ 3

0

sin

(
1

(10−3 + (1− x)2)3/2

)
dx.

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3

Maple15: 0.7499743685;

Pari/GP: 0.7927730971479080755;

Mathematica, Chebfun fail to answer;

Chen, '06: 0.7578918118.

Correct answer: J ∈ 0.749974368527[1; 3] !
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Current work

Quantization problem. Digital �lter synthesis (work with Silviu Filip
and Guillaume Hanrot).
Issue: the coe�cients are machine numbers.

Certi�ed spectral methods. Given f a solution of a linear ODE,
given (ϕn)n∈N a family of orthogonal polynomials, compute a pair
(P,∆) where P is a polynomial expressed in the basis (ϕn)n∈N and
∆ an interval such that f − P takes all its values in ∆.

Chebyshev basis: beautiful work by Alexandre Benoit, Mioara Jolde³
and Marc Mezzarobba, based on very nice results by A. Benoit and
Bruno Salvy.

Gegenbauer polynomials: work with Thomas Grégoire.
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Evaluation of Elementary Functions

exp, ln, cos, sin, arctan,
√

, . . .

Goal: evaluation of ϕ to a given accuracy η.
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