
An instance of analysis of algorithms:

The plain GCD algorithm

Brigitte Vallée,

Laboratoire GREYC,

CNRS and University of Caen, France

Based on a joint work

with Valérie Berthé, Jean Creusefond and Löıck Lhote.

Journées nationales du GDR Informatique Mathématique

Bordeaux, Février 2015.

An instance of analysis of algorithms:

The plain GCD algorithm

Brigitte Vallée,

Laboratoire GREYC,

CNRS and University of Caen, France

Based on a joint work

with Valérie Berthé, Jean Creusefond and Löıck Lhote.

Journées nationales du GDR Informatique Mathématique

Bordeaux, Février 2015.

Computing the gcd of ` inputs

For ` = 2: the “classical” Euclid algorithm :

a sequence of Euclidean divisions

For ` ≥ 3, there are various strategies.

The plain algorithm performs a sequence of computations on two entries;

On the input (x1, x2, . . . , x`), it computes

– first: y2 := gcd(x1, x2)

– then, for k ∈ [3..`]: yk := gcd(xk, yk−1) = gcd(x1, x2, . . . , xk).

The “total” gcd y` := gcd(x1, x2, . . . , x`) is obtained after `− 1 phases.

Each phase performs a call to the classical Euclid algorithm.

The same formal scheme

– for polynomials over a finite field: Fq[X]

– for numbers : positive integers.

A very natural scheme, proposed in Knuth’s book.....

but not yet analyzed for ` > 2 (Problem HM 48)

Computing the gcd of ` inputs

For ` = 2: the “classical” Euclid algorithm :

a sequence of Euclidean divisions

For ` ≥ 3, there are various strategies.

The plain algorithm performs a sequence of computations on two entries;

On the input (x1, x2, . . . , x`), it computes

– first: y2 := gcd(x1, x2)

– then, for k ∈ [3..`]: yk := gcd(xk, yk−1) = gcd(x1, x2, . . . , xk).

The “total” gcd y` := gcd(x1, x2, . . . , x`) is obtained after `− 1 phases.

Each phase performs a call to the classical Euclid algorithm.

The same formal scheme

– for polynomials over a finite field: Fq[X]

– for numbers : positive integers.

A very natural scheme, proposed in Knuth’s book.....

but not yet analyzed for ` > 2 (Problem HM 48)

Computing the gcd of ` inputs

For ` = 2: the “classical” Euclid algorithm :

a sequence of Euclidean divisions

For ` ≥ 3, there are various strategies.

The plain algorithm performs a sequence of computations on two entries;

On the input (x1, x2, . . . , x`), it computes

– first: y2 := gcd(x1, x2)

– then, for k ∈ [3..`]: yk := gcd(xk, yk−1) = gcd(x1, x2, . . . , xk).

The “total” gcd y` := gcd(x1, x2, . . . , x`) is obtained after `− 1 phases.

Each phase performs a call to the classical Euclid algorithm.

The same formal scheme

– for polynomials over a finite field: Fq[X]

– for numbers : positive integers.

A very natural scheme, proposed in Knuth’s book.....

but not yet analyzed for ` > 2 (Problem HM 48)

Computing the gcd of ` inputs

For ` = 2: the “classical” Euclid algorithm :

a sequence of Euclidean divisions

For ` ≥ 3, there are various strategies.

The plain algorithm performs a sequence of computations on two entries;

On the input (x1, x2, . . . , x`), it computes

– first: y2 := gcd(x1, x2)

– then, for k ∈ [3..`]: yk := gcd(xk, yk−1) = gcd(x1, x2, . . . , xk).

The “total” gcd y` := gcd(x1, x2, . . . , x`) is obtained after `− 1 phases.

Each phase performs a call to the classical Euclid algorithm.

The same formal scheme

– for polynomials over a finite field: Fq[X]

– for numbers : positive integers.

A very natural scheme, proposed in Knuth’s book.....

but not yet analyzed for ` > 2 (Problem HM 48)

Computing the gcd of ` inputs

For ` = 2: the “classical” Euclid algorithm :

a sequence of Euclidean divisions

For ` ≥ 3, there are various strategies.

The plain algorithm performs a sequence of computations on two entries;

On the input (x1, x2, . . . , x`), it computes

– first: y2 := gcd(x1, x2)

– then, for k ∈ [3..`]: yk := gcd(xk, yk−1) = gcd(x1, x2, . . . , xk).

The “total” gcd y` := gcd(x1, x2, . . . , x`) is obtained after `− 1 phases.

Each phase performs a call to the classical Euclid algorithm.

The same formal scheme

– for polynomials over a finite field: Fq[X]

– for numbers : positive integers.

A very natural scheme, proposed in Knuth’s book.....

but not yet analyzed for ` > 2 (Problem HM 48)

Computing the gcd of ` inputs

For ` = 2: the “classical” Euclid algorithm :

a sequence of Euclidean divisions

For ` ≥ 3, there are various strategies.

The plain algorithm performs a sequence of computations on two entries;

On the input (x1, x2, . . . , x`), it computes

– first: y2 := gcd(x1, x2)

– then, for k ∈ [3..`]: yk := gcd(xk, yk−1) = gcd(x1, x2, . . . , xk).

The “total” gcd y` := gcd(x1, x2, . . . , x`) is obtained after `− 1 phases.

Each phase performs a call to the classical Euclid algorithm.

The same formal scheme

– for polynomials over a finite field: Fq[X]

– for numbers : positive integers.

A very natural scheme, proposed in Knuth’s book.....

but not yet analyzed for ` > 2 (Problem HM 48)

Which behavior can be expected?

Knuth wrote: “In most cases, the size of the partial gcd decreases rapidly

during the first few phases of the calculation.

This will make the remainder of the computation quite fast”.

Our analysis exhibits a more precise phenomenon:

A strong difference between the first phase and the subsequent phases.

In most cases, “almost all the calculation” is done during the first phase.

We prove the following facts about the number of divisions performed,

measured with respect to the size of the input:

– during the first phase:

– it is linear on average,

– it asymptotically follows a beta law;

– during subsequent phases:

– it is constant on average

– it asymptotically follows a geometric law

The same phenomena occur for the size of the partial gcd.

Which behavior can be expected?

Knuth wrote: “In most cases, the size of the partial gcd decreases rapidly

during the first few phases of the calculation.

This will make the remainder of the computation quite fast”.

Our analysis exhibits a more precise phenomenon:

A strong difference between the first phase and the subsequent phases.

In most cases, “almost all the calculation” is done during the first phase.

We prove the following facts about the number of divisions performed,

measured with respect to the size of the input:

– during the first phase:

– it is linear on average,

– it asymptotically follows a beta law;

– during subsequent phases:

– it is constant on average

– it asymptotically follows a geometric law

The same phenomena occur for the size of the partial gcd.

Which behavior can be expected?

Knuth wrote: “In most cases, the size of the partial gcd decreases rapidly

during the first few phases of the calculation.

This will make the remainder of the computation quite fast”.

Our analysis exhibits a more precise phenomenon:

A strong difference between the first phase and the subsequent phases.

In most cases, “almost all the calculation” is done during the first phase.

We prove the following facts about the number of divisions performed,

measured with respect to the size of the input:

– during the first phase:

– it is linear on average,

– it asymptotically follows a beta law;

– during subsequent phases:

– it is constant on average

– it asymptotically follows a geometric law

The same phenomena occur for the size of the partial gcd.

Which behavior can be expected?

Knuth wrote: “In most cases, the size of the partial gcd decreases rapidly

during the first few phases of the calculation.

This will make the remainder of the computation quite fast”.

Our analysis exhibits a more precise phenomenon:

A strong difference between the first phase and the subsequent phases.

In most cases, “almost all the calculation” is done during the first phase.

We prove the following facts about the number of divisions performed,

measured with respect to the size of the input:

– during the first phase:

– it is linear on average,

– it asymptotically follows a beta law;

– during subsequent phases:

– it is constant on average

– it asymptotically follows a geometric law

The same phenomena occur for the size of the partial gcd.

Which behavior can be expected?

Knuth wrote: “In most cases, the size of the partial gcd decreases rapidly

during the first few phases of the calculation.

This will make the remainder of the computation quite fast”.

Our analysis exhibits a more precise phenomenon:

A strong difference between the first phase and the subsequent phases.

In most cases, “almost all the calculation” is done during the first phase.

We prove the following facts about the number of divisions performed,

measured with respect to the size of the input:

– during the first phase:

– it is linear on average,

– it asymptotically follows a beta law;

– during subsequent phases:

– it is constant on average

– it asymptotically follows a geometric law

The same phenomena occur for the size of the partial gcd.

Plan of the talk.

I. Probabilistic analysis of algorithms.
Based on Analytic Combinatorics and Generating Functions.

II. Analysis of the polynomial case.
Based on Analytic Combinatorics and power Generating Functions.

III. Analysis of the integer case.
Based on Dynamical Combinatorics and Dirichlet Generating Functions

IV. An unified point of view for the two analyses?
A dynamical point of view.

Plan of the talk.

I. Probabilistic analysis of algorithms.
Based on Analytic Combinatorics and Generating Functions.

II. Analysis of the polynomial case.
Based on Analytic Combinatorics and power Generating Functions.

III. Analysis of the integer case.
Based on Dynamical Combinatorics and Dirichlet Generating Functions

IV. An unified point of view for the two analyses?
A dynamical point of view.

Plan of the talk.

I. Probabilistic analysis of algorithms.
Based on Analytic Combinatorics and Generating Functions.

II. Analysis of the polynomial case.
Based on Analytic Combinatorics and power Generating Functions.

III. Analysis of the integer case.
Based on Dynamical Combinatorics and Dirichlet Generating Functions

IV. An unified point of view for the two analyses?
A dynamical point of view.

Plan of the talk.

I. Probabilistic analysis of algorithms.
Based on Analytic Combinatorics and Generating Functions.

II. Analysis of the polynomial case.
Based on Analytic Combinatorics and power Generating Functions.

III. Analysis of the integer case.
Based on Dynamical Combinatorics and Dirichlet Generating Functions

IV. An unified point of view for the two analyses?
A dynamical point of view.

Plan of the talk.

I. Probabilistic analysis of algorithms.
Based on Analytic Combinatorics and Generating Functions.

II. Analysis of the polynomial case.
Based on Analytic Combinatorics and power Generating Functions.

III. Analysis of the integer case.
Based on Dynamical Combinatorics and Dirichlet Generating Functions

IV. An unified point of view for the two analyses?
A dynamical point of view.

I. Probabilistic analysis of algorithms

Based on Analytic Combinatorics

and Generating Functions

Probabilistic analysis of an algorithm

– The set of the possible inputs for the algorithm is denoted by Ω.

– There is a size function d : Ω→ N.

– The subset Ωn := {ω : d(ω) = n} is finite

– It is endowed with the uniform distribution Pn.

– There is a cost function L : Ω→ N,

– study the probabilistic behavior of L on each Ωn

– estimate its mean, its variance, its distribution,

– in an asymptotic way (for n→∞).

En[L] ∼
n→∞

an, Vn[L] ∼
n→∞

bn, Pn
[
L− an√

bn
∈ [x, x+ dx]

]
∼

n→∞
f(x)dx

Probabilistic analysis of an algorithm

– The set of the possible inputs for the algorithm is denoted by Ω.

– There is a size function d : Ω→ N.

– The subset Ωn := {ω : d(ω) = n} is finite

– It is endowed with the uniform distribution Pn.

– There is a cost function L : Ω→ N,

– study the probabilistic behavior of L on each Ωn

– estimate its mean, its variance, its distribution,

– in an asymptotic way (for n→∞).

En[L] ∼
n→∞

an, Vn[L] ∼
n→∞

bn, Pn
[
L− an√

bn
∈ [x, x+ dx]

]
∼

n→∞
f(x)dx

Probabilistic analysis of an algorithm

– The set of the possible inputs for the algorithm is denoted by Ω.

– There is a size function d : Ω→ N.

– The subset Ωn := {ω : d(ω) = n} is finite

– It is endowed with the uniform distribution Pn.

– There is a cost function L : Ω→ N,

– study the probabilistic behavior of L on each Ωn

– estimate its mean, its variance, its distribution,

– in an asymptotic way (for n→∞).

En[L] ∼
n→∞

an, Vn[L] ∼
n→∞

bn, Pn
[
L− an√

bn
∈ [x, x+ dx]

]
∼

n→∞
f(x)dx

Probabilistic analysis of an algorithm

– The set of the possible inputs for the algorithm is denoted by Ω.

– There is a size function d : Ω→ N.

– The subset Ωn := {ω : d(ω) = n} is finite

– It is endowed with the uniform distribution Pn.

– There is a cost function L : Ω→ N,

– study the probabilistic behavior of L on each Ωn

– estimate its mean, its variance, its distribution,

– in an asymptotic way (for n→∞).

En[L] ∼
n→∞

an, Vn[L] ∼
n→∞

bn, Pn
[
L− an√

bn
∈ [x, x+ dx]

]
∼

n→∞
f(x)dx

Examples of limit laws (discrete or continuous)

x-axis: possible values of the cost L(ω) y-axis: probability density x 7→ f(x)

f(x)dx := P[ω; L(ω) ∈ [x, x+ dx]]

Gaussian law f(t) � e−t2/2 Beta law (a, b) f(t) � ta−1(1− t)b−1

Uniform law f(t) � 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5 6 7 8 9 10

p
ro

b
a
b
ili

ty
 d

e
n
si

ty

value

A discrete law: Geometric law f(n) � an

Examples of limit laws (discrete or continuous)

x-axis: possible values of the cost L(ω) y-axis: probability density x 7→ f(x)

f(x)dx := P[ω; L(ω) ∈ [x, x+ dx]]

Gaussian law f(t) � e−t2/2 Beta law (a, b) f(t) � ta−1(1− t)b−1

Uniform law f(t) � 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5 6 7 8 9 10

p
ro

b
a
b
ili

ty
 d

e
n
si

ty

value

A discrete law: Geometric law f(n) � an

Usual analysis for the Euclid Algorithm ` = 2.

The usual size of x = (x1, x2) is the maximum of the sizes of the inputs:

d(x) := max(d(x1),d(x2)).

The two costs of interest are :

– the number L of steps – the size D of the output gcd.

Main results:

The number L of divisions

has a mean value En[L] of linear order;

Its distribution is asymptotically gaussian.

The size D of the gcd

has a mean value En[D] of constant order;

Its distribution is asymptotically geometric.

This (usual) size is not adapted for a number of inputs ` > 2.

For ` ≥ 2, we consider the total size and this choice modifies the results

=⇒ Irruption of the (unexpected) beta law

Usual analysis for the Euclid Algorithm ` = 2.

The usual size of x = (x1, x2) is the maximum of the sizes of the inputs:

d(x) := max(d(x1),d(x2)).

The two costs of interest are :

– the number L of steps – the size D of the output gcd.

Main results:

The number L of divisions

has a mean value En[L] of linear order;

Its distribution is asymptotically gaussian.

The size D of the gcd

has a mean value En[D] of constant order;

Its distribution is asymptotically geometric.

This (usual) size is not adapted for a number of inputs ` > 2.

For ` ≥ 2, we consider the total size and this choice modifies the results

=⇒ Irruption of the (unexpected) beta law

Usual analysis for the Euclid Algorithm ` = 2.

The usual size of x = (x1, x2) is the maximum of the sizes of the inputs:

d(x) := max(d(x1),d(x2)).

The two costs of interest are :

– the number L of steps – the size D of the output gcd.

Main results:

The number L of divisions

has a mean value En[L] of linear order;

Its distribution is asymptotically gaussian.

The size D of the gcd

has a mean value En[D] of constant order;

Its distribution is asymptotically geometric.

This (usual) size is not adapted for a number of inputs ` > 2.

For ` ≥ 2, we consider the total size and this choice modifies the results

=⇒ Irruption of the (unexpected) beta law

Usual analysis for the Euclid Algorithm ` = 2.

The usual size of x = (x1, x2) is the maximum of the sizes of the inputs:

d(x) := max(d(x1),d(x2)).

The two costs of interest are :

– the number L of steps – the size D of the output gcd.

Main results:

The number L of divisions

has a mean value En[L] of linear order;

Its distribution is asymptotically gaussian.

The size D of the gcd

has a mean value En[D] of constant order;

Its distribution is asymptotically geometric.

This (usual) size is not adapted for a number of inputs ` > 2.

For ` ≥ 2, we consider the total size and this choice modifies the results

=⇒ Irruption of the (unexpected) beta law

Usual analysis for the Euclid Algorithm ` = 2.

The usual size of x = (x1, x2) is the maximum of the sizes of the inputs:

d(x) := max(d(x1),d(x2)).

The two costs of interest are :

– the number L of steps – the size D of the output gcd.

Main results:

The number L of divisions

has a mean value En[L] of linear order;

Its distribution is asymptotically gaussian.

The size D of the gcd

has a mean value En[D] of constant order;

Its distribution is asymptotically geometric.

This (usual) size is not adapted for a number of inputs ` > 2.

For ` ≥ 2, we consider the total size and this choice modifies the results

=⇒ Irruption of the (unexpected) beta law

Analysis of algorithms and generating functions.

Two main cases here, depending on

– the type of the input x = (x1, x2, . . . , x`), xi ∈ N or xi ∈ Fq[X]

– the natural size on the input : the size of
∏
xi.

– for polynomials: the total degree d(x) = d(
∏
xi) =

∑
d(xi)

Ωn := {x = (x1, x2, . . . , x`); d(
∏
xi) = n}

Power generating functions for polynomials

S(z) :=
∑
x∈Ω

zd(
∏
xi) =⇒ |Ωn| = [zn]S(z)

– for integers: the total length d(x) = blog
∏
xic ∼

∑
blog xic

Ωn := {x = (x1, x2, . . . , x`); en ≤
∏
xi < en+1}

Dirichlet generating functions for integers

S(s) :=
∑
x∈Ω

(
∏
xi)
−s =⇒ |Ωn| =

∑
en≤N<en+1

[N−s]S(s)

Analysis of algorithms and generating functions.

Two main cases here, depending on

– the type of the input x = (x1, x2, . . . , x`), xi ∈ N or xi ∈ Fq[X]

– the natural size on the input : the size of
∏
xi.

– for polynomials: the total degree d(x) = d(
∏
xi) =

∑
d(xi)

Ωn := {x = (x1, x2, . . . , x`); d(
∏
xi) = n}

Power generating functions for polynomials

S(z) :=
∑
x∈Ω

zd(
∏
xi) =⇒ |Ωn| = [zn]S(z)

– for integers: the total length d(x) = blog
∏
xic ∼

∑
blog xic

Ωn := {x = (x1, x2, . . . , x`); en ≤
∏
xi < en+1}

Dirichlet generating functions for integers

S(s) :=
∑
x∈Ω

(
∏
xi)
−s =⇒ |Ωn| =

∑
en≤N<en+1

[N−s]S(s)

Analysis of algorithms and generating functions.

Two main cases here, depending on

– the type of the input x = (x1, x2, . . . , x`), xi ∈ N or xi ∈ Fq[X]

– the natural size on the input : the size of
∏
xi.

– for polynomials: the total degree d(x) = d(
∏
xi) =

∑
d(xi)

Ωn := {x = (x1, x2, . . . , x`); d(
∏
xi) = n}

Power generating functions for polynomials

S(z) :=
∑
x∈Ω

zd(
∏
xi) =⇒ |Ωn| = [zn]S(z)

– for integers: the total length d(x) = blog
∏
xic ∼

∑
blog xic

Ωn := {x = (x1, x2, . . . , x`); en ≤
∏
xi < en+1}

Dirichlet generating functions for integers

S(s) :=
∑
x∈Ω

(
∏
xi)
−s =⇒ |Ωn| =

∑
en≤N<en+1

[N−s]S(s)

Analysis of algorithms and generating functions (II).

Pn[L = m] =
|Ωn,m|
|Ωn|

with Ωn,m = {x ∈ Ωn; L(x) = m}

Numerators are expressed with coefficients of bivariate generating functions.

For polynomials:

Ωn,m := {x = (x1, x2, . . . , x`}; d(
∏
xi) = n, L(x) = m}

S(z) :=
∑
x∈Ω

zd(
∏
xi), S(z, u) :=

∑
x∈Ω

zd(
∏
xi)uL(x)

Pn[L = m] =
[znum]S(z, u)

[zn]S(z)

For integers:

Ωn,m := {x = (x1, x2, . . . , x`); en ≤
∏
xi < en+1, L(x) = m}

S(s) :=
∑
x∈Ω

(
∏
xi)
−s, S(s, u) :=

∑
x∈Ω

(
∏
xi)
−suL(x),

Pn[L = m] =

∑
en≤N<en+1

[N−sum]S(s, u)∑
en≤N<en+1

[N−s]S(s)

Analysis of algorithms and generating functions (GF): main principles.

Distributional analysis is related

– to the asymptotic behaviour of coefficients of the BGF’s

– obtained with two steps:

Combinatorial step.

Translate the structure of the algorithm on the generating functions:

– obtain an algorithmic expression of the generating function,

– from which the dominant singularity becomes apparent.

Analytic step.

For any GF, the asymptotic behaviour of coefficients is related to

– the position and the nature of its dominant singularity

– when the GF is viewed as a function of the complex variable.

The same principles in the two analyses and two main differences.

– Dirichlet GF’s more difficult to study than power GF’s

– For integers, there are correlations due to carries.

Analysis of algorithms and generating functions (GF): main principles.

Distributional analysis is related

– to the asymptotic behaviour of coefficients of the BGF’s

– obtained with two steps:

Combinatorial step.

Translate the structure of the algorithm on the generating functions:

– obtain an algorithmic expression of the generating function,

– from which the dominant singularity becomes apparent.

Analytic step.

For any GF, the asymptotic behaviour of coefficients is related to

– the position and the nature of its dominant singularity

– when the GF is viewed as a function of the complex variable.

The same principles in the two analyses and two main differences.

– Dirichlet GF’s more difficult to study than power GF’s

– For integers, there are correlations due to carries.

II. Analysis of the polynomial case.

Based on Analytic Combinatorics

and Generating Functions

Probabilistic analysis of the plain `–GCD algorithm on Fq[X].

On the input (x1, x2, . . . , x`),

– the algorithm computes the total gcd y` := gcd(x1, x2, . . . , x`)

– with `− 1 phases.

– The k-th phase computes the k–th gcd,

yk := gcd(xk, yk−1) = gcd(x1, x2, . . . , xk) .

– each phase performs the classical Euclid algorithm

via a sequence of Euclidean divisions

The set of inputs is Ω = {(x1, . . . , x`); xi monic ∈ Fq[X]}
The size of an input : d(x1, . . . , x`) = d(x1) + . . .+ d(x`),

with d(x) := deg(x).

Main costs of interest

– the number Lk of divisions during the k–th phase

i.e. on the input (xk, yk−1)

– the degree Dk of the k–th gcd

(at the beginning of the k-th phase).

Probabilistic analysis of the plain `–GCD algorithm on Fq[X].

On the input (x1, x2, . . . , x`),

– the algorithm computes the total gcd y` := gcd(x1, x2, . . . , x`)

– with `− 1 phases.

– The k-th phase computes the k–th gcd,

yk := gcd(xk, yk−1) = gcd(x1, x2, . . . , xk) .

– each phase performs the classical Euclid algorithm

via a sequence of Euclidean divisions

The set of inputs is Ω = {(x1, . . . , x`); xi monic ∈ Fq[X]}
The size of an input : d(x1, . . . , x`) = d(x1) + . . .+ d(x`),

with d(x) := deg(x).

Main costs of interest

– the number Lk of divisions during the k–th phase

i.e. on the input (xk, yk−1)

– the degree Dk of the k–th gcd

(at the beginning of the k-th phase).

Probabilistic analysis of the plain `–GCD algorithm on Fq[X].

On the input (x1, x2, . . . , x`),

– the algorithm computes the total gcd y` := gcd(x1, x2, . . . , x`)

– with `− 1 phases.

– The k-th phase computes the k–th gcd,

yk := gcd(xk, yk−1) = gcd(x1, x2, . . . , xk) .

– each phase performs the classical Euclid algorithm

via a sequence of Euclidean divisions

The set of inputs is Ω = {(x1, . . . , x`); xi monic ∈ Fq[X]}
The size of an input : d(x1, . . . , x`) = d(x1) + . . .+ d(x`),

with d(x) := deg(x).

Main costs of interest

– the number Lk of divisions during the k–th phase

i.e. on the input (xk, yk−1)

– the degree Dk of the k–th gcd

(at the beginning of the k-th phase).

Probabilistic analysis of the plain `–GCD algorithm on Fq[X].

On the input (x1, x2, . . . , x`),

– the algorithm computes the total gcd y` := gcd(x1, x2, . . . , x`)

– with `− 1 phases.

– The k-th phase computes the k–th gcd,

yk := gcd(xk, yk−1) = gcd(x1, x2, . . . , xk) .

– each phase performs the classical Euclid algorithm

via a sequence of Euclidean divisions

The set of inputs is Ω = {(x1, . . . , x`); xi monic ∈ Fq[X]}
The size of an input : d(x1, . . . , x`) = d(x1) + . . .+ d(x`),

with d(x) := deg(x).

Main costs of interest

– the number Lk of divisions during the k–th phase

i.e. on the input (xk, yk−1)

– the degree Dk of the k–th gcd

(at the beginning of the k-th phase).

The combinatorial bijection induced by the Euclid Algorithm [` = 2]

Euclid(a1, a2), [case d(a1) ≥ d(a2)].

a1 = m1 a2 + a3 0 < d(a3) < d(a2)

a2 = m2 a3 + a4 0 < d(a4) < d(a3)

. . . = . . . +

ar−1 = mr−1 ar + ar+1 0 < d(ar+1) < d(ar)

ar = mr ar+1 + 0

The last non zero remainder is the gcd y. Here y = ar+1.

The Euclid Algorithm is then extended to the case when d(a1) < d(a2),

by letting Euclid(a1, a2) := Euclid(a2, a1)

The pair (a1, a2) of monic polynomials is entirely determined by

– the sequence of quotients (m1,m2, . . . ,mr), where

– the first quotient m1 is monic, with

d(m1) ≥ 0 [d(a1) ≥ d(a2)] or d(m1) > 0 [d(a2) > d(a2)]

– any quotient mi for i ∈ [2..r] is general with d(mi) > 0

– the monic gcd y = ar+1.

The combinatorial bijection induced by the Euclid Algorithm [` = 2]

Euclid(a1, a2), [case d(a1) ≥ d(a2)].

a1 = m1 a2 + a3 0 < d(a3) < d(a2)

a2 = m2 a3 + a4 0 < d(a4) < d(a3)

. . . = . . . +

ar−1 = mr−1 ar + ar+1 0 < d(ar+1) < d(ar)

ar = mr ar+1 + 0

The last non zero remainder is the gcd y. Here y = ar+1.

The Euclid Algorithm is then extended to the case when d(a1) < d(a2),

by letting Euclid(a1, a2) := Euclid(a2, a1)

The pair (a1, a2) of monic polynomials is entirely determined by

– the sequence of quotients (m1,m2, . . . ,mr), where

– the first quotient m1 is monic, with

d(m1) ≥ 0 [d(a1) ≥ d(a2)] or d(m1) > 0 [d(a2) > d(a2)]

– any quotient mi for i ∈ [2..r] is general with d(mi) > 0

– the monic gcd y = ar+1.

The combinatorial bijection induced by the Euclid Algorithm [` = 2]

Euclid(a1, a2), [case d(a1) ≥ d(a2)].

a1 = m1 a2 + a3 0 < d(a3) < d(a2)

a2 = m2 a3 + a4 0 < d(a4) < d(a3)

. . . = . . . +

ar−1 = mr−1 ar + ar+1 0 < d(ar+1) < d(ar)

ar = mr ar+1 + 0

The last non zero remainder is the gcd y. Here y = ar+1.

The Euclid Algorithm is then extended to the case when d(a1) < d(a2),

by letting Euclid(a1, a2) := Euclid(a2, a1)

The pair (a1, a2) of monic polynomials is entirely determined by

– the sequence of quotients (m1,m2, . . . ,mr), where

– the first quotient m1 is monic, with

d(m1) ≥ 0 [d(a1) ≥ d(a2)] or d(m1) > 0 [d(a2) > d(a2)]

– any quotient mi for i ∈ [2..r] is general with d(mi) > 0

– the monic gcd y = ar+1.

The combinatorial bijection induced by the Euclid Algorithm [` = 2]

Euclid(a1, a2), [case d(a1) ≥ d(a2)].

a1 = m1 a2 + a3 0 < d(a3) < d(a2)

a2 = m2 a3 + a4 0 < d(a4) < d(a3)

. . . = . . . +

ar−1 = mr−1 ar + ar+1 0 < d(ar+1) < d(ar)

ar = mr ar+1 + 0

The last non zero remainder is the gcd y. Here y = ar+1.

The Euclid Algorithm is then extended to the case when d(a1) < d(a2),

by letting Euclid(a1, a2) := Euclid(a2, a1)

The pair (a1, a2) of monic polynomials is entirely determined by

– the sequence of quotients (m1,m2, . . . ,mr),

where

– the first quotient m1 is monic, with

d(m1) ≥ 0 [d(a1) ≥ d(a2)] or d(m1) > 0 [d(a2) > d(a2)]

– any quotient mi for i ∈ [2..r] is general with d(mi) > 0

– the monic gcd y = ar+1.

The combinatorial bijection induced by the Euclid Algorithm [` = 2]

Euclid(a1, a2), [case d(a1) ≥ d(a2)].

a1 = m1 a2 + a3 0 < d(a3) < d(a2)

a2 = m2 a3 + a4 0 < d(a4) < d(a3)

. . . = . . . +

ar−1 = mr−1 ar + ar+1 0 < d(ar+1) < d(ar)

ar = mr ar+1 + 0

The last non zero remainder is the gcd y. Here y = ar+1.

The Euclid Algorithm is then extended to the case when d(a1) < d(a2),

by letting Euclid(a1, a2) := Euclid(a2, a1)

The pair (a1, a2) of monic polynomials is entirely determined by

– the sequence of quotients (m1,m2, . . . ,mr), where

– the first quotient m1 is monic, with

d(m1) ≥ 0 [d(a1) ≥ d(a2)] or d(m1) > 0 [d(a2) > d(a2)]

– any quotient mi for i ∈ [2..r] is general with d(mi) > 0

– the monic gcd y = ar+1.

The combinatorial bijection induced by the Euclid Algorithm [` = 2]

Euclid(a1, a2), [case d(a1) ≥ d(a2)].

a1 = m1 a2 + a3 0 < d(a3) < d(a2)

a2 = m2 a3 + a4 0 < d(a4) < d(a3)

. . . = . . . +

ar−1 = mr−1 ar + ar+1 0 < d(ar+1) < d(ar)

ar = mr ar+1 + 0

The last non zero remainder is the gcd y. Here y = ar+1.

The Euclid Algorithm is then extended to the case when d(a1) < d(a2),

by letting Euclid(a1, a2) := Euclid(a2, a1)

The pair (a1, a2) of monic polynomials is entirely determined by

– the sequence of quotients (m1,m2, . . . ,mr), where

– the first quotient m1 is monic, with

d(m1) ≥ 0 [d(a1) ≥ d(a2)] or d(m1) > 0 [d(a2) > d(a2)]

– any quotient mi for i ∈ [2..r] is general with d(mi) > 0

– the monic gcd y = ar+1.

The combinatorial bijection induced by the Euclid Algorithm [` = 2]

Euclid(a1, a2), [case d(a1) ≥ d(a2)].

a1 = m1 a2 + a3 0 < d(a3) < d(a2)

a2 = m2 a3 + a4 0 < d(a4) < d(a3)

. . . = . . . +

ar−1 = mr−1 ar + ar+1 0 < d(ar+1) < d(ar)

ar = mr ar+1 + 0

The last non zero remainder is the gcd y. Here y = ar+1.

The Euclid Algorithm is then extended to the case when d(a1) < d(a2),

by letting Euclid(a1, a2) := Euclid(a2, a1)

The pair (a1, a2) of monic polynomials is entirely determined by

– the sequence of quotients (m1,m2, . . . ,mr), where

– the first quotient m1 is monic, with

d(m1) ≥ 0 [d(a1) ≥ d(a2)] or d(m1) > 0 [d(a2) > d(a2)]

– any quotient mi for i ∈ [2..r] is general with d(mi) > 0

– the monic gcd y = ar+1.

Generating functions relative to the Euclid algorithm (` = 2).

U(z) is the gen. function of the set U of monic polynomials

G(z) is the gen. function of the general non constant polynomials

U(z) =
∑
a∈U

zd(a) =
1

1− qz
, G(z) = (q − 1) [U(z)− 1] =

(q − 1)qz

1− qz

Ω = U2 ≈ {first quotient} × {sequence of quotients} × {GCD}
(a1, a2) ≈ m1 × (m2, . . . ,mr) × y

U(z1)U(z2) = U(z1) + [U(z2)− 1] · 1

1−G(z1z2)
· U(z1z2)

Generating functions relative to the Euclid algorithm (` = 2).

U(z) is the gen. function of the set U of monic polynomials

G(z) is the gen. function of the general non constant polynomials

U(z) =
∑
a∈U

zd(a) =
1

1− qz
, G(z) = (q − 1) [U(z)− 1] =

(q − 1)qz

1− qz

Ω = U2 ≈ {first quotient} × {sequence of quotients} × {GCD}
(a1, a2) ≈ m1 × (m2, . . . ,mr) × y

U(z1)U(z2) = U(z1) + [U(z2)− 1] · 1

1−G(z1z2)
· U(z1z2)

Generating functions relative to the Euclid algorithm (` = 2).

U(z) is the gen. function of the set U of monic polynomials

G(z) is the gen. function of the general non constant polynomials

U(z) =
∑
a∈U

zd(a) =
1

1− qz
, G(z) = (q − 1) [U(z)− 1] =

(q − 1)qz

1− qz

Ω = U2 ≈ {first quotient} × {sequence of quotients} × {GCD}
(a1, a2) ≈ m1 × (m2, . . . ,mr) × y

U(z1)U(z2) = U(z1) + [U(z2)− 1] · 1

1−G(z1z2)
· U(z1z2)

Generating functions relative to the Euclid algorithm (` = 2).

U(z) is the gen. function of the set U of monic polynomials

G(z) is the gen. function of the general non constant polynomials

U(z) =
∑
a∈U

zd(a) =
1

1− qz
, G(z) = (q − 1) [U(z)− 1] =

(q − 1)qz

1− qz

Ω = U2 ≈ {first quotient} × {sequence of quotients} × {GCD}
(a1, a2) ≈ m1 × (m2, . . . ,mr) × y

U(z1)U(z2) = U(z1) + [U(z2)− 1] · 1

1−G(z1z2)
· U(z1z2)

Generating functions relative to the Euclid algorithm (` = 2).

U(z) is the gen. function of the set U of monic polynomials

G(z) is the gen. function of the general non constant polynomials

U(z) =
∑
a∈U

zd(a) =
1

1− qz
, G(z) = (q − 1) [U(z)− 1] =

(q − 1)qz

1− qz

Ω = U2 ≈ {first quotient} × {sequence of quotients} × {GCD}
(a1, a2) ≈ m1 × (m2, . . . ,mr) × y

U(z1)U(z2) = U(z1) + [U(z2)− 1] · 1

1−G(z1z2)
· U(z1z2)

Proof of the decomposition:

U(z1)U(z2) = U(z1) + [U(z2)− 1] · 1

1−G(z1z2)
· U(z1z2)

There are two cases : (I) d(a1) ≥ d(a2) or (II) d(a2) > d(a1)

Euclid(a1, a2), [case d(a1) ≥ d(a2)].

a1 = m1 a2 + a3 d(a1) = d(m1) + d(a2)

a2 = m2 a3 + a4 d(a2) = d(m2) + d(a3)

. . . = . . . +

ar−1 = mr−1 ar + ar+1 d(ar−1) = d(mr−1) + d(ar)

ar = mr y + 0 d(ar) = d(mr) + d(y)

d(a1) = d(m1) + d(m2) + . . .+ d(mr) + d(y)

(I) d(a2) = d(m2) + . . .+ d(mr) + d(y)

z
d(a1)
1 z

d(a2)
2 = z

d(m1)
1 · (z1z2)

d(m2)+...+d(mr) · (z1z2)
d(y)

d(a1) = d(m2) + . . .+ d(mr) + d(y)

(II) d(a2) = d(m1) + d(m2) + . . .+ d(mr) + d(y)

z
d(a1)
1 z

d(a2)
2 = z

d(m1)
2 · (z1z2)

d(m2)+...+d(mr) · (z1z2)
d(y)

Proof of the decomposition:

U(z1)U(z2) = U(z1) + [U(z2)− 1] · 1

1−G(z1z2)
· U(z1z2)

There are two cases : (I) d(a1) ≥ d(a2) or (II) d(a2) > d(a1)

Euclid(a1, a2), [case d(a1) ≥ d(a2)].

a1 = m1 a2 + a3 d(a1) = d(m1) + d(a2)

a2 = m2 a3 + a4 d(a2) = d(m2) + d(a3)

. . . = . . . +

ar−1 = mr−1 ar + ar+1 d(ar−1) = d(mr−1) + d(ar)

ar = mr y + 0 d(ar) = d(mr) + d(y)

d(a1) = d(m1) + d(m2) + . . .+ d(mr) + d(y)

(I) d(a2) = d(m2) + . . .+ d(mr) + d(y)

z
d(a1)
1 z

d(a2)
2 = z

d(m1)
1 · (z1z2)

d(m2)+...+d(mr) · (z1z2)
d(y)

d(a1) = d(m2) + . . .+ d(mr) + d(y)

(II) d(a2) = d(m1) + d(m2) + . . .+ d(mr) + d(y)

z
d(a1)
1 z

d(a2)
2 = z

d(m1)
2 · (z1z2)

d(m2)+...+d(mr) · (z1z2)
d(y)

Proof of the decomposition:

U(z1)U(z2) = U(z1) + [U(z2)− 1] · 1

1−G(z1z2)
· U(z1z2)

There are two cases : (I) d(a1) ≥ d(a2) or (II) d(a2) > d(a1)

Euclid(a1, a2), [case d(a1) ≥ d(a2)].

a1 = m1 a2 + a3 d(a1) = d(m1) + d(a2)

a2 = m2 a3 + a4 d(a2) = d(m2) + d(a3)

. . . = . . . +

ar−1 = mr−1 ar + ar+1 d(ar−1) = d(mr−1) + d(ar)

ar = mr y + 0 d(ar) = d(mr) + d(y)

d(a1) = d(m1) + d(m2) + . . .+ d(mr) + d(y)

(I) d(a2) = d(m2) + . . .+ d(mr) + d(y)

z
d(a1)
1 z

d(a2)
2 = z

d(m1)
1 · (z1z2)

d(m2)+...+d(mr) · (z1z2)
d(y)

d(a1) = d(m2) + . . .+ d(mr) + d(y)

(II) d(a2) = d(m1) + d(m2) + . . .+ d(mr) + d(y)

z
d(a1)
1 z

d(a2)
2 = z

d(m1)
2 · (z1z2)

d(m2)+...+d(mr) · (z1z2)
d(y)

Proof of the decomposition:

U(z1)U(z2) = U(z1) + [U(z2)− 1] · 1

1−G(z1z2)
· U(z1z2)

There are two cases : (I) d(a1) ≥ d(a2) or (II) d(a2) > d(a1)

Euclid(a1, a2), [case d(a1) ≥ d(a2)].

a1 = m1 a2 + a3 d(a1) = d(m1) + d(a2)

a2 = m2 a3 + a4 d(a2) = d(m2) + d(a3)

. . . = . . . +

ar−1 = mr−1 ar + ar+1 d(ar−1) = d(mr−1) + d(ar)

ar = mr y + 0 d(ar) = d(mr) + d(y)

d(a1) = d(m1) + d(m2) + . . .+ d(mr) + d(y)

(I) d(a2) = d(m2) + . . .+ d(mr) + d(y)

z
d(a1)
1 z

d(a2)
2 = z

d(m1)
1 · (z1z2)

d(m2)+...+d(mr) · (z1z2)
d(y)

d(a1) = d(m2) + . . .+ d(mr) + d(y)

(II) d(a2) = d(m1) + d(m2) + . . .+ d(mr) + d(y)

z
d(a1)
1 z

d(a2)
2 = z

d(m1)
2 · (z1z2)

d(m2)+...+d(mr) · (z1z2)
d(y)

Proof of the decomposition:

U(z1)U(z2) = U(z1) + [U(z2)− 1] · 1

1−G(z1z2)
· U(z1z2)

There are two cases : (I) d(a1) ≥ d(a2) or (II) d(a2) > d(a1)

Euclid(a1, a2), [case d(a1) ≥ d(a2)].

a1 = m1 a2 + a3 d(a1) = d(m1) + d(a2)

a2 = m2 a3 + a4 d(a2) = d(m2) + d(a3)

. . . = . . . +

ar−1 = mr−1 ar + ar+1 d(ar−1) = d(mr−1) + d(ar)

ar = mr y + 0 d(ar) = d(mr) + d(y)

d(a1) = d(m1) + d(m2) + . . .+ d(mr) + d(y)

(I) d(a2) = d(m2) + . . .+ d(mr) + d(y)

z
d(a1)
1 z

d(a2)
2 = z

d(m1)
1 · (z1z2)

d(m2)+...+d(mr) · (z1z2)
d(y)

d(a1) = d(m2) + . . .+ d(mr) + d(y)

(II) d(a2) = d(m1) + d(m2) + . . .+ d(mr) + d(y)

z
d(a1)
1 z

d(a2)
2 = z

d(m1)
2 · (z1z2)

d(m2)+...+d(mr) · (z1z2)
d(y)

Algorithmic expression of the GF of the `-Euclid Algorithm

We have shown that the Euclid algorithm (` = 2) translates as a product

U(z1)U(z2) = T (z1, z2) U(z1z2), with T (z1, z2) =
U(z1) + U(z2)− 1

1−G(z1z2)

Then, for any ` ≥ 2, the `–Euclid algorithm translates as the product

U(z1) · . . . · U(z`) = U(t`)

`−1∏
k=1

T (zk+1, tk) [tk := z1 · z2 · . . . · zk]

Now, with z = z1 = . . . = z`,

the (plain) generating function S(z) of U` has the alternative expression

S(z) = U(z)` = U(z`)
`−1∏
k=1

T (z, zk)

which is an exact translation of the `-Euclid algorithm.

T is the “phase generating function”.

Algorithmic expression of the GF of the `-Euclid Algorithm

We have shown that the Euclid algorithm (` = 2) translates as a product

U(z1)U(z2) = T (z1, z2) U(z1z2), with T (z1, z2) =
U(z1) + U(z2)− 1

1−G(z1z2)

Then, for any ` ≥ 2, the `–Euclid algorithm translates as the product

U(z1) · . . . · U(z`) = U(t`)

`−1∏
k=1

T (zk+1, tk) [tk := z1 · z2 · . . . · zk]

Now, with z = z1 = . . . = z`,

the (plain) generating function S(z) of U` has the alternative expression

S(z) = U(z)` = U(z`)
`−1∏
k=1

T (z, zk)

which is an exact translation of the `-Euclid algorithm.

T is the “phase generating function”.

Algorithmic expression of the GF of the `-Euclid Algorithm

We have shown that the Euclid algorithm (` = 2) translates as a product

U(z1)U(z2) = T (z1, z2) U(z1z2), with T (z1, z2) =
U(z1) + U(z2)− 1

1−G(z1z2)

Then, for any ` ≥ 2, the `–Euclid algorithm translates as the product

U(z1) · . . . · U(z`) = U(t`)

`−1∏
k=1

T (zk+1, tk) [tk := z1 · z2 · . . . · zk]

Now, with z = z1 = . . . = z`,

the (plain) generating function S(z) of U` has the alternative expression

S(z) = U(z)` = U(z`)

`−1∏
k=1

T (z, zk)

which is an exact translation of the `-Euclid algorithm.

T is the “phase generating function”.

Bivariate Generating Functions relative to the `-Euclid Algorithm

We start with: S(z) = U(z)` = U(z`)

`−1∏
k=1

T (z, zk)

For studying the distribution of the two costs :

– Lk (number of steps in the k-th phase)

– Dk (degree of the gcd at the beginning of the k-th phase)

we use bivariate generating functions,

with an extra variable u which marks the cost

Lk(z, u) = U(z)` · T (z, zk, u)

T (z, zk)
, Dk(z, u) = U(z)` · U(zk, u)

U(zk)
,

With:

T (z, t, u) = u
U(z) + U(t)− 1

1− uG(zt)
, U(t, u) =

1

1− qut
.

Bivariate Generating Functions relative to the `-Euclid Algorithm

We start with: S(z) = U(z)` = U(z`)

`−1∏
k=1

T (z, zk)

For studying the distribution of the two costs :

– Lk (number of steps in the k-th phase)

– Dk (degree of the gcd at the beginning of the k-th phase)

we use bivariate generating functions,

with an extra variable u which marks the cost

Lk(z, u) = U(z)` · T (z, zk, u)

T (z, zk)
, Dk(z, u) = U(z)` · U(zk, u)

U(zk)
,

With:

T (z, t, u) = u
U(z) + U(t)− 1

1− uG(zt)
, U(t, u) =

1

1− qut
.

Bivariate Generating Functions relative to the `-Euclid Algorithm

We start with: S(z) = U(z)` = U(z`)

`−1∏
k=1

T (z, zk)

For studying the distribution of the two costs :

– Lk (number of steps in the k-th phase)

– Dk (degree of the gcd at the beginning of the k-th phase)

we use bivariate generating functions,

with an extra variable u which marks the cost

Lk(z, u) = U(z)` · T (z, zk, u)

T (z, zk)
, Dk(z, u) = U(z)` · U(zk, u)

U(zk)
,

With:

T (z, t, u) = u
U(z) + U(t)− 1

1− uG(zt)
, U(t, u) =

1

1− qut
.

Towards the distributional analysis of Lk and Dk.

Pn[Lk > m] =
∑
j>m

[ujzn]Lk(z, u)

[zn]S(z)
=

[zn]
∑
j>m[uj]Lk(z, u)

[zn]S(z)
=

[zn]L̂
[m]
k (z)

[zn]S(z)

Pn[Dk > m] =
∑
j>m

[ujzn]Dk(z, u)

[zn]S(z)
=

[zn]
∑
j>m[uj]Dk(z, u)

[zn]S(z)
=

[zn]D̂
[m]
k (z)

[zn]S(z)

The generating functions “of the numerators” are

L̂
[m]
k (z) =

1

(1− qz)`
·G(zk+1)m, D̂

[m]
k (z) =

1

(1− qz)`
· (qzk)m,

both of type
1

(1− qz)`
·Ak(z)m,

The asymptotics depends on the value a := Ak(1/q) at the pole z = 1/q

– For the first phase k = 1, one has a = 1

– For the subsequent phases k ≥ 2, one has a < 1

Towards the distributional analysis of Lk and Dk.

Pn[Lk > m] =
∑
j>m

[ujzn]Lk(z, u)

[zn]S(z)
=

[zn]
∑
j>m[uj]Lk(z, u)

[zn]S(z)
=

[zn]L̂
[m]
k (z)

[zn]S(z)

Pn[Dk > m] =
∑
j>m

[ujzn]Dk(z, u)

[zn]S(z)
=

[zn]
∑
j>m[uj]Dk(z, u)

[zn]S(z)
=

[zn]D̂
[m]
k (z)

[zn]S(z)

The generating functions “of the numerators” are

L̂
[m]
k (z) =

1

(1− qz)`
·G(zk+1)m, D̂

[m]
k (z) =

1

(1− qz)`
· (qzk)m,

both of type
1

(1− qz)`
·Ak(z)m,

The asymptotics depends on the value a := Ak(1/q) at the pole z = 1/q

– For the first phase k = 1, one has a = 1

– For the subsequent phases k ≥ 2, one has a < 1

Towards the distributional analysis of Lk and Dk.

Pn[Lk > m] =
∑
j>m

[ujzn]Lk(z, u)

[zn]S(z)
=

[zn]
∑
j>m[uj]Lk(z, u)

[zn]S(z)
=

[zn]L̂
[m]
k (z)

[zn]S(z)

Pn[Dk > m] =
∑
j>m

[ujzn]Dk(z, u)

[zn]S(z)
=

[zn]
∑
j>m[uj]Dk(z, u)

[zn]S(z)
=

[zn]D̂
[m]
k (z)

[zn]S(z)

The generating functions “of the numerators” are

L̂
[m]
k (z) =

1

(1− qz)`
·G(zk+1)m, D̂

[m]
k (z) =

1

(1− qz)`
· (qzk)m,

both of type
1

(1− qz)`
·Ak(z)m,

The asymptotics depends on the value a := Ak(1/q) at the pole z = 1/q

– For the first phase k = 1, one has a = 1

– For the subsequent phases k ≥ 2, one has a < 1

A general result for the asymptotics of coefficients

Consider the function F [m](z) =
1

(1− z)`
A(z)m, with ` ≥ 2

where (i) A(z) is analytic on the disk |z| ≤ ρ with ρ > 1,

(ii) a := A(1) 6= 0, b := A′(1) > 0,

(iii) for |z| close enough to 1, |A(z)| ≤ A(|z|).

Then, for n→∞ and m/n ∈ [0, a/b[,

[zn]F [m](z) =
n`−1

(`− 1)!
am

(
1− b

a

m

n

)̀−1 [
1 +O

(
1

n

)]
.

Application to the present situation.

For the first phase: a = 1 =⇒ A “beta” behavior (1, `− 1)

For the subsequent phases: a < 1 =⇒ A geometric behavior of ratio a

A general result for the asymptotics of coefficients

Consider the function F [m](z) =
1

(1− z)`
A(z)m, with ` ≥ 2

where (i) A(z) is analytic on the disk |z| ≤ ρ with ρ > 1,

(ii) a := A(1) 6= 0, b := A′(1) > 0,

(iii) for |z| close enough to 1, |A(z)| ≤ A(|z|).

Then, for n→∞ and m/n ∈ [0, a/b[,

[zn]F [m](z) =
n`−1

(`− 1)!
am

(
1− b

a

m

n

)̀−1 [
1 +O

(
1

n

)]
.

Application to the present situation.

For the first phase: a = 1 =⇒ A “beta” behavior (1, `− 1)

For the subsequent phases: a < 1 =⇒ A geometric behavior of ratio a

Main result for the number of divisions Lk – First phase (k = 1)

The number of divisions L1 performed during the first phase

– has a mean value of linear order

En[L1] =
q − 1

2q

n

`
+

3q + 1

4q
+O

(
1

n

)
.

2q

q − 1
= entropy

– follows an asymptotic beta law of parameter (1, `− 1).

Its distribution satisfies when n→∞, and m/n ∈ [0, (q − 1)/(2q)]

Pn[L1 > m] =

(
1− 2q

q − 1

m

n

)̀−1

+O

(
1

nα

)
.

Main result for the number of divisions Lk – Subsequent phases (case k ≥ 2)

For k ≥ 2, the number of divisions performed during the k-th phase

– has a mean value of constant order

En[Lk] =

(
1 +

q − 1

qk − q

)
+O

(
1

n

)
,

– follows an asymptotic geometric law, with ratio
q − 1

qk − 1
For n→∞ and m/n ∈ [0, 1/(k + 1) · (qk − 1)/qk]

Pn[Lk ≥ m] =

(
q − 1

qk − 1

)m
+O

(
log n

n

)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5 6 7 8 9 10

p
ro

b
a
b
ili

ty
 d

e
n
si

ty

value

Main result for the number of divisions Lk – Subsequent phases (case k ≥ 2)

For k ≥ 2, the number of divisions performed during the k-th phase

– has a mean value of constant order

En[Lk] =

(
1 +

q − 1

qk − q

)
+O

(
1

n

)
,

– follows an asymptotic geometric law, with ratio
q − 1

qk − 1
For n→∞ and m/n ∈ [0, 1/(k + 1) · (qk − 1)/qk]

Pn[Lk ≥ m] =

(
q − 1

qk − 1

)m
+O

(
log n

n

)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5 6 7 8 9 10

p
ro

b
a
b
ili

ty
 d

e
n
si

ty

value

III. Analysis on integers.

We use Dirichlet generating functions

together with a dynamical point of view

III. Analysis on integers.

We use Dirichlet generating functions

together with a dynamical point of view

Remind : The Euclid algorithm (` = 2) on polynomials

translates as a product of power generating functions

U(z)U(t) = U(zt) · 1

1−G(zt)
· [U(z) + U(t)− 1].

We will prove that the Euclid algorithm (` = 2) on integers

translates as a product of Dirichlet generating functions

ζ(s) ζ(t) = ζ(s+ t) ·

(
1

2
(I −Gs+t)

−1 ◦ (Gs + Gt)

)
[1](0)

This involves – the Riemann Dirichlet series ζ(s) =
∑
a≥1 a

−s

– a functional operator Gs (that depends on a parameter s)

Gs[f](t) =
∑
m≥1

(
1

m+ t

)s
f

(
1

m+ t

)
The operator Gs “generates” the quotients; it is closely related

to the transfer operator of the underlying dynamical system...

An instance of a “dynamical” analysis....

More involved than the previous one, but provides the same type of results.

Remind : The Euclid algorithm (` = 2) on polynomials

translates as a product of power generating functions

U(z)U(t) = U(zt) · 1

1−G(zt)
· [U(z) + U(t)− 1].

We will prove that the Euclid algorithm (` = 2) on integers

translates as a product of Dirichlet generating functions

ζ(s) ζ(t) = ζ(s+ t) ·

(
1

2
(I −Gs+t)

−1 ◦ (Gs + Gt)

)
[1](0)

This involves – the Riemann Dirichlet series ζ(s) =
∑
a≥1 a

−s

– a functional operator Gs (that depends on a parameter s)

Gs[f](t) =
∑
m≥1

(
1

m+ t

)s
f

(
1

m+ t

)
The operator Gs “generates” the quotients; it is closely related

to the transfer operator of the underlying dynamical system...

An instance of a “dynamical” analysis....

More involved than the previous one, but provides the same type of results.

Remind : The Euclid algorithm (` = 2) on polynomials

translates as a product of power generating functions

U(z)U(t) = U(zt) · 1

1−G(zt)
· [U(z) + U(t)− 1].

We will prove that the Euclid algorithm (` = 2) on integers

translates as a product of Dirichlet generating functions

ζ(s) ζ(t) = ζ(s+ t) ·

(
1

2
(I −Gs+t)

−1 ◦ (Gs + Gt)

)
[1](0)

This involves – the Riemann Dirichlet series ζ(s) =
∑
a≥1 a

−s

– a functional operator Gs (that depends on a parameter s)

Gs[f](t) =
∑
m≥1

(
1

m+ t

)s
f

(
1

m+ t

)

The operator Gs “generates” the quotients; it is closely related

to the transfer operator of the underlying dynamical system...

An instance of a “dynamical” analysis....

More involved than the previous one, but provides the same type of results.

Remind : The Euclid algorithm (` = 2) on polynomials

translates as a product of power generating functions

U(z)U(t) = U(zt) · 1

1−G(zt)
· [U(z) + U(t)− 1].

We will prove that the Euclid algorithm (` = 2) on integers

translates as a product of Dirichlet generating functions

ζ(s) ζ(t) = ζ(s+ t) ·

(
1

2
(I −Gs+t)

−1 ◦ (Gs + Gt)

)
[1](0)

This involves – the Riemann Dirichlet series ζ(s) =
∑
a≥1 a

−s

– a functional operator Gs (that depends on a parameter s)

Gs[f](t) =
∑
m≥1

(
1

m+ t

)s
f

(
1

m+ t

)
The operator Gs “generates” the quotients; it is closely related

to the transfer operator of the underlying dynamical system...

An instance of a “dynamical” analysis....

More involved than the previous one, but provides the same type of results.

Remind : The Euclid algorithm (` = 2) on polynomials

translates as a product of power generating functions

U(z)U(t) = U(zt) · 1

1−G(zt)
· [U(z) + U(t)− 1].

We will prove that the Euclid algorithm (` = 2) on integers

translates as a product of Dirichlet generating functions

ζ(s) ζ(t) = ζ(s+ t) ·

(
1

2
(I −Gs+t)

−1 ◦ (Gs + Gt)

)
[1](0)

This involves – the Riemann Dirichlet series ζ(s) =
∑
a≥1 a

−s

– a functional operator Gs (that depends on a parameter s)

Gs[f](t) =
∑
m≥1

(
1

m+ t

)s
f

(
1

m+ t

)
The operator Gs “generates” the quotients; it is closely related

to the transfer operator of the underlying dynamical system...

An instance of a “dynamical” analysis....

More involved than the previous one, but provides the same type of results.

Similarities and differences between the two analyses

Polynomials Integers

GF Power GF’s Dirichlet GF and operators

Basic tool G(z) =
∑
m

zd(m) Gs[f](t) =
∑
m≥1

(
1

m+ t

)s
f

(
1

m+ t

)

Phase GF
U(zk) + U(z)− 1

1−G(zk+1)
(I −G(k+1)s)

−1 ◦ (Gks + Gs)[1](0)

Singularities z s.t. G(zk+1) = 1 s s.t. λ((k + 1)s) = 1

Extraction Cauchy Formula Perron Formula

Contours Disks Vertical lines

λ(s) is the dominant eigenvalue of Gs

λ(2) = 1 ; λ′(2) closely related to the entropy

Similarities and differences between the two analyses

Polynomials Integers

GF Power GF’s Dirichlet GF and operators

Basic tool G(z) =
∑
m

zd(m) Gs[f](t) =
∑
m≥1

(
1

m+ t

)s
f

(
1

m+ t

)

Phase GF
U(zk) + U(z)− 1

1−G(zk+1)
(I −G(k+1)s)

−1 ◦ (Gks + Gs)[1](0)

Singularities z s.t. G(zk+1) = 1 s s.t. λ((k + 1)s) = 1

Extraction Cauchy Formula Perron Formula

Contours Disks Vertical lines

λ(s) is the dominant eigenvalue of Gs

λ(2) = 1 ; λ′(2) closely related to the entropy

Results in the integer case.

NB: the integer size of the input ≈ number of digits in base e

We prove the following facts about the number of divisions performed

– during the first phase:

– it is linear on average,

– it asymptotically follows a beta law;

– during subsequent phase:

– it is constant on average

– it asymptotically follows a geometric law

The same phenomena occur for the size of the partial gcd.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5 6 7 8 9 10

p
ro

b
a
b
ili

ty
 d

e
n
si

ty

value

Results in the integer case.

NB: the integer size of the input ≈ number of digits in base e

We prove the following facts about the number of divisions performed

– during the first phase:

– it is linear on average,

– it asymptotically follows a beta law;

– during subsequent phase:

– it is constant on average

– it asymptotically follows a geometric law

The same phenomena occur for the size of the partial gcd.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5 6 7 8 9 10

p
ro

b
a
b
ili

ty
 d

e
n
si

ty

value

Results in the integer case.

NB: the integer size of the input ≈ number of digits in base e

We prove the following facts about the number of divisions performed

– during the first phase:

– it is linear on average,

– it asymptotically follows a beta law;

– during subsequent phase:

– it is constant on average

– it asymptotically follows a geometric law

The same phenomena occur for the size of the partial gcd.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5 6 7 8 9 10

p
ro

b
a
b
ili

ty
 d

e
n
si

ty

value

Probabilistic analysis of the plain `–GCD algorithm on Z.

On the input (x1, x2, . . . , x`),

– the algorithm computes the total gcd y` := gcd(x1, x2, . . . , x`)

– with `− 1 phases.

– The k-th phase computes the k–th gcd,

yk := gcd(xk, yk−1) = gcd(x1, x2, . . . , xk) .

– each phase performs the classical Euclid algorithm

via a sequence of Euclidean divisions

The set of inputs is Ω = {x := (x1, . . . , x`); xi ∈ N}
The size of an input: d(x) := d(x1x2 . . . x`) with d(x) := blog xc

“almost additive” d(x) ≈ d(x1) + . . .+ d(x`)

Main costs of interest

– the number Lk of divisions during the k–th phase

i.e. on the input (xk, yk−1)

– the size Dk of the k–th gcd

(at the beginning of the k-th phase).

Probabilistic analysis of the plain `–GCD algorithm on Z.

On the input (x1, x2, . . . , x`),

– the algorithm computes the total gcd y` := gcd(x1, x2, . . . , x`)

– with `− 1 phases.

– The k-th phase computes the k–th gcd,

yk := gcd(xk, yk−1) = gcd(x1, x2, . . . , xk) .

– each phase performs the classical Euclid algorithm

via a sequence of Euclidean divisions

The set of inputs is Ω = {x := (x1, . . . , x`); xi ∈ N}
The size of an input: d(x) := d(x1x2 . . . x`) with d(x) := blog xc

“almost additive” d(x) ≈ d(x1) + . . .+ d(x`)

Main costs of interest

– the number Lk of divisions during the k–th phase

i.e. on the input (xk, yk−1)

– the size Dk of the k–th gcd

(at the beginning of the k-th phase).

Probabilistic analysis of the plain `–GCD algorithm on Z.

On the input (x1, x2, . . . , x`),

– the algorithm computes the total gcd y` := gcd(x1, x2, . . . , x`)

– with `− 1 phases.

– The k-th phase computes the k–th gcd,

yk := gcd(xk, yk−1) = gcd(x1, x2, . . . , xk) .

– each phase performs the classical Euclid algorithm

via a sequence of Euclidean divisions

The set of inputs is Ω = {x := (x1, . . . , x`); xi ∈ N}
The size of an input: d(x) := d(x1x2 . . . x`) with d(x) := blog xc

“almost additive” d(x) ≈ d(x1) + . . .+ d(x`)

Main costs of interest

– the number Lk of divisions during the k–th phase

i.e. on the input (xk, yk−1)

– the size Dk of the k–th gcd

(at the beginning of the k-th phase).

Probabilistic analysis of the plain `–GCD algorithm on Z.

On the input (x1, x2, . . . , x`),

– the algorithm computes the total gcd y` := gcd(x1, x2, . . . , x`)

– with `− 1 phases.

– The k-th phase computes the k–th gcd,

yk := gcd(xk, yk−1) = gcd(x1, x2, . . . , xk) .

– each phase performs the classical Euclid algorithm

via a sequence of Euclidean divisions

The set of inputs is Ω = {x := (x1, . . . , x`); xi ∈ N}
The size of an input: d(x) := d(x1x2 . . . x`) with d(x) := blog xc

“almost additive” d(x) ≈ d(x1) + . . .+ d(x`)

Main costs of interest

– the number Lk of divisions during the k–th phase

i.e. on the input (xk, yk−1)

– the size Dk of the k–th gcd

(at the beginning of the k-th phase).

The combinatorial bijection induced by the Euclid Algorithm [` = 2]

Euclid(a1, a2), [case a1 ≥ a2].

a1 = m1 a2 + a3 0 < a3 < a2

a2 = m2 a3 + a4 0 < a4 < a3

. . . = . . . +

ar−1 = mr−1 ar + ar+1 0 < ar+1 < ar

ar = mr ar+1 + 0

The last non zero remainder is the gcd y. Here y = ar+1.

The Euclid Algorithm is then extended to the case when a1 < a2,

by letting Euclid(a1, a2) := Euclid(a2, a1)

The pair (a1, a2) of positive integers is entirely determined by

– the sequence of quotients (m1,m2, . . . ,mr), where

– the first quotient m1 satisfies

m1 ≥ 0 [a1 ≥ a2] or m1 ≥ 1 [a1 < a2]

– any quotient mi for i ∈ [2..r] satisfies mi ≥ 1

– the gcd y = ar+1 satisfies y ≥ 1

The combinatorial bijection induced by the Euclid Algorithm [` = 2]

Euclid(a1, a2), [case a1 ≥ a2].

a1 = m1 a2 + a3 0 < a3 < a2

a2 = m2 a3 + a4 0 < a4 < a3

. . . = . . . +

ar−1 = mr−1 ar + ar+1 0 < ar+1 < ar

ar = mr ar+1 + 0

The last non zero remainder is the gcd y. Here y = ar+1.

The Euclid Algorithm is then extended to the case when a1 < a2,

by letting Euclid(a1, a2) := Euclid(a2, a1)

The pair (a1, a2) of positive integers is entirely determined by

– the sequence of quotients (m1,m2, . . . ,mr), where

– the first quotient m1 satisfies

m1 ≥ 0 [a1 ≥ a2] or m1 ≥ 1 [a1 < a2]

– any quotient mi for i ∈ [2..r] satisfies mi ≥ 1

– the gcd y = ar+1 satisfies y ≥ 1

The combinatorial bijection induced by the Euclid Algorithm [` = 2]

Euclid(a1, a2), [case a1 ≥ a2].

a1 = m1 a2 + a3 0 < a3 < a2

a2 = m2 a3 + a4 0 < a4 < a3

. . . = . . . +

ar−1 = mr−1 ar + ar+1 0 < ar+1 < ar

ar = mr ar+1 + 0

The last non zero remainder is the gcd y. Here y = ar+1.

The Euclid Algorithm is then extended to the case when a1 < a2,

by letting Euclid(a1, a2) := Euclid(a2, a1)

The pair (a1, a2) of positive integers is entirely determined by

– the sequence of quotients (m1,m2, . . . ,mr), where

– the first quotient m1 satisfies

m1 ≥ 0 [a1 ≥ a2] or m1 ≥ 1 [a1 < a2]

– any quotient mi for i ∈ [2..r] satisfies mi ≥ 1

– the gcd y = ar+1 satisfies y ≥ 1

The combinatorial bijection induced by the Euclid Algorithm [` = 2]

Euclid(a1, a2), [case a1 ≥ a2].

a1 = m1 a2 + a3 0 < a3 < a2

a2 = m2 a3 + a4 0 < a4 < a3

. . . = . . . +

ar−1 = mr−1 ar + ar+1 0 < ar+1 < ar

ar = mr ar+1 + 0

The last non zero remainder is the gcd y. Here y = ar+1.

The Euclid Algorithm is then extended to the case when a1 < a2,

by letting Euclid(a1, a2) := Euclid(a2, a1)

The pair (a1, a2) of positive integers is entirely determined by

– the sequence of quotients (m1,m2, . . . ,mr),

where

– the first quotient m1 satisfies

m1 ≥ 0 [a1 ≥ a2] or m1 ≥ 1 [a1 < a2]

– any quotient mi for i ∈ [2..r] satisfies mi ≥ 1

– the gcd y = ar+1 satisfies y ≥ 1

The combinatorial bijection induced by the Euclid Algorithm [` = 2]

Euclid(a1, a2), [case a1 ≥ a2].

a1 = m1 a2 + a3 0 < a3 < a2

a2 = m2 a3 + a4 0 < a4 < a3

. . . = . . . +

ar−1 = mr−1 ar + ar+1 0 < ar+1 < ar

ar = mr ar+1 + 0

The last non zero remainder is the gcd y. Here y = ar+1.

The Euclid Algorithm is then extended to the case when a1 < a2,

by letting Euclid(a1, a2) := Euclid(a2, a1)

The pair (a1, a2) of positive integers is entirely determined by

– the sequence of quotients (m1,m2, . . . ,mr), where

– the first quotient m1 satisfies

m1 ≥ 0 [a1 ≥ a2] or m1 ≥ 1 [a1 < a2]

– any quotient mi for i ∈ [2..r] satisfies mi ≥ 1

– the gcd y = ar+1 satisfies y ≥ 1

The combinatorial bijection induced by the Euclid Algorithm [` = 2]

Euclid(a1, a2), [case a1 ≥ a2].

a1 = m1 a2 + a3 0 < a3 < a2

a2 = m2 a3 + a4 0 < a4 < a3

. . . = . . . +

ar−1 = mr−1 ar + ar+1 0 < ar+1 < ar

ar = mr ar+1 + 0

The last non zero remainder is the gcd y. Here y = ar+1.

The Euclid Algorithm is then extended to the case when a1 < a2,

by letting Euclid(a1, a2) := Euclid(a2, a1)

The pair (a1, a2) of positive integers is entirely determined by

– the sequence of quotients (m1,m2, . . . ,mr), where

– the first quotient m1 satisfies

m1 ≥ 0 [a1 ≥ a2] or m1 ≥ 1 [a1 < a2]

– any quotient mi for i ∈ [2..r] satisfies mi ≥ 1

– the gcd y = ar+1 satisfies y ≥ 1

The combinatorial bijection induced by the Euclid Algorithm [` = 2]

Euclid(a1, a2), [case a1 ≥ a2].

a1 = m1 a2 + a3 0 < a3 < a2

a2 = m2 a3 + a4 0 < a4 < a3

. . . = . . . +

ar−1 = mr−1 ar + ar+1 0 < ar+1 < ar

ar = mr ar+1 + 0

The last non zero remainder is the gcd y. Here y = ar+1.

The Euclid Algorithm is then extended to the case when a1 < a2,

by letting Euclid(a1, a2) := Euclid(a2, a1)

The pair (a1, a2) of positive integers is entirely determined by

– the sequence of quotients (m1,m2, . . . ,mr), where

– the first quotient m1 satisfies

m1 ≥ 0 [a1 ≥ a2] or m1 ≥ 1 [a1 < a2]

– any quotient mi for i ∈ [2..r] satisfies mi ≥ 1

– the gcd y = ar+1 satisfies y ≥ 1

Euclid Algorithm and Continued Fractions Expansions

We use Continued Fractions Expansions and LFT’s hm(x) := 1/(m+x)

Euclid(a1, a2), [case a1 ≥ a2].

y := gcd(a1, a2); a1 = u1 y, a2 = u2 y, a3 = u3 y

gcd(u1, u2) = 1, gcd(u2, u3) = 1

u2

u1
=

1

m1 +
1

m2 +
1

m3 +
1

. . . +
1

mr

,
u3

u2
=

1

m2 +
1

m3 +
1

. . . +
1

mr

,

u2

u1
= hm1 ◦ hm2 ◦ . . . ◦ hmr (0),

u3

u2
= hm2 ◦ . . . ◦ hmr (0)

1

u2
1

= (hm1 ◦ hm2 ◦ . . . ◦ hmr)
′(0)

1

u2
2

= (hm2 ◦ . . . ◦ hmr)
′(0)

For LFT’s, the denominators are recovered with the derivatives

if h(x) =
ax+ b

cx+ d
, then h′(x) =

deth

(cx+ d)2

Euclid Algorithm and Continued Fractions Expansions

We use Continued Fractions Expansions and LFT’s hm(x) := 1/(m+x)

Euclid(a1, a2), [case a1 ≥ a2].

y := gcd(a1, a2); a1 = u1 y, a2 = u2 y, a3 = u3 y

gcd(u1, u2) = 1, gcd(u2, u3) = 1

u2

u1
=

1

m1 +
1

m2 +
1

m3 +
1

. . . +
1

mr

,
u3

u2
=

1

m2 +
1

m3 +
1

. . . +
1

mr

,

u2

u1
= hm1 ◦ hm2 ◦ . . . ◦ hmr (0),

u3

u2
= hm2 ◦ . . . ◦ hmr (0)

1

u2
1

= (hm1 ◦ hm2 ◦ . . . ◦ hmr)
′(0)

1

u2
2

= (hm2 ◦ . . . ◦ hmr)
′(0)

For LFT’s, the denominators are recovered with the derivatives

if h(x) =
ax+ b

cx+ d
, then h′(x) =

deth

(cx+ d)2

Euclid Algorithm and Continued Fractions Expansions

We use Continued Fractions Expansions and LFT’s hm(x) := 1/(m+x)

Euclid(a1, a2), [case a1 ≥ a2].

y := gcd(a1, a2); a1 = u1 y, a2 = u2 y, a3 = u3 y

gcd(u1, u2) = 1, gcd(u2, u3) = 1

u2

u1
=

1

m1 +
1

m2 +
1

m3 +
1

. . . +
1

mr

,
u3

u2
=

1

m2 +
1

m3 +
1

. . . +
1

mr

,

u2

u1
= hm1 ◦ hm2 ◦ . . . ◦ hmr (0),

u3

u2
= hm2 ◦ . . . ◦ hmr (0)

1

u2
1

= (hm1 ◦ hm2 ◦ . . . ◦ hmr)
′(0)

1

u2
2

= (hm2 ◦ . . . ◦ hmr)
′(0)

For LFT’s, the denominators are recovered with the derivatives

if h(x) =
ax+ b

cx+ d
, then h′(x) =

deth

(cx+ d)2

Euclid Algorithm and Continued Fractions Expansions

We use Continued Fractions Expansions and LFT’s hm(x) := 1/(m+x)

Euclid(a1, a2), [case a1 ≥ a2].

y := gcd(a1, a2); a1 = u1 y, a2 = u2 y, a3 = u3 y

gcd(u1, u2) = 1, gcd(u2, u3) = 1

u2

u1
=

1

m1 +
1

m2 +
1

m3 +
1

. . . +
1

mr

,
u3

u2
=

1

m2 +
1

m3 +
1

. . . +
1

mr

,

u2

u1
= hm1 ◦ hm2 ◦ . . . ◦ hmr (0),

u3

u2
= hm2 ◦ . . . ◦ hmr (0)

1

u2
1

= (hm1 ◦ hm2 ◦ . . . ◦ hmr)
′(0)

1

u2
2

= (hm2 ◦ . . . ◦ hmr)
′(0)

For LFT’s, the denominators are recovered with the derivatives

if h(x) =
ax+ b

cx+ d
, then h′(x) =

deth

(cx+ d)2

Euclid Algorithm and Continued Fractions Expansions

We use Continued Fractions Expansions and LFT’s hm(x) := 1/(m+x)

Euclid(a1, a2), [case a1 ≥ a2].

y := gcd(a1, a2); a1 = u1 y, a2 = u2 y, a3 = u3 y

gcd(u1, u2) = 1, gcd(u2, u3) = 1

u2

u1
=

1

m1 +
1

m2 +
1

m3 +
1

. . . +
1

mr

,
u3

u2
=

1

m2 +
1

m3 +
1

. . . +
1

mr

,

u2

u1
= hm1 ◦ hm2 ◦ . . . ◦ hmr (0),

u3

u2
= hm2 ◦ . . . ◦ hmr (0)

1

u2
1

= (hm1 ◦ hm2 ◦ . . . ◦ hmr)
′(0)

1

u2
2

= (hm2 ◦ . . . ◦ hmr)
′(0)

For LFT’s, the denominators are recovered with the derivatives

if h(x) =
ax+ b

cx+ d
, then h′(x) =

deth

(cx+ d)2

Euclid Algorithm and Continued Fractions Expansions

We use Continued Fractions Expansions and LFT’s hm(x) := 1/(m+x)

Euclid(a1, a2), [case a1 ≥ a2].

y := gcd(a1, a2); a1 = u1 y, a2 = u2 y, a3 = u3 y

gcd(u1, u2) = 1, gcd(u2, u3) = 1

u2

u1
=

1

m1 +
1

m2 +
1

m3 +
1

. . . +
1

mr

,
u3

u2
=

1

m2 +
1

m3 +
1

. . . +
1

mr

,

u2

u1
= hm1 ◦ hm2 ◦ . . . ◦ hmr (0),

u3

u2
= hm2 ◦ . . . ◦ hmr (0)

1

u2
1

= (hm1 ◦ hm2 ◦ . . . ◦ hmr)
′(0)

1

u2
2

= (hm2 ◦ . . . ◦ hmr)
′(0)

For LFT’s, the denominators are recovered with the derivatives

if h(x) =
ax+ b

cx+ d
, then h′(x) =

deth

(cx+ d)2

Proof of the alternative expression for the Dirichlet generating function (` = 2)

ζ(s1)ζ(s2) = ζ(s1 + s2)
(1

2
(I −Gs1+s2)−1 ◦ (Gs1 + Gs2)

)
[1](0)

with Gs[f](t) =
∑
h∈H

|h′(t)|s/2f ◦ h(t) =
∑
m≥1

(
1

m+ t

)s
f

(
1

m+ t

)

Proof. The Dirichlet generating function of the inputs is∑
(a1,a2)∈N2

1

as11

1

as22
= ζ(s1) · ζ(s2), ζ(s) =

∑
a∈N

1

as

With the gcd y: ζ(s1)ζ(s2) =

∑
y≥1

1

ys1+s2

 ∑

(u1,u2)∈N2
gcd(u1,u2)=1

1

us1
1

1

us2
2

Using LFT’s as in the previous slide :∑
(u1,u2),u2≤u1
gcd(u1,u2)=1

1

us1
1

1

us2
2

=
∑
g∈H,
h∈H?

|(g ◦h)′(0)|s1/2|h′(0)|s2/2

=
∑
g∈H,
h∈H?

|g′(h(0))|s1/2|h′(0)|(s1+s2)/2 = (I −Gs1+s2)
−1◦Gs1 [1](0)

Proof of the alternative expression for the Dirichlet generating function (` = 2)

ζ(s1)ζ(s2) = ζ(s1 + s2)
(1

2
(I −Gs1+s2)−1 ◦ (Gs1 + Gs2)

)
[1](0)

with Gs[f](t) =
∑
h∈H

|h′(t)|s/2f ◦ h(t) =
∑
m≥1

(
1

m+ t

)s
f

(
1

m+ t

)
Proof. The Dirichlet generating function of the inputs is∑

(a1,a2)∈N2

1

as11

1

as22
= ζ(s1) · ζ(s2), ζ(s) =

∑
a∈N

1

as

With the gcd y: ζ(s1)ζ(s2) =

∑
y≥1

1

ys1+s2

 ∑

(u1,u2)∈N2
gcd(u1,u2)=1

1

us1
1

1

us2
2

Using LFT’s as in the previous slide :∑
(u1,u2),u2≤u1
gcd(u1,u2)=1

1

us1
1

1

us2
2

=
∑
g∈H,
h∈H?

|(g ◦h)′(0)|s1/2|h′(0)|s2/2

=
∑
g∈H,
h∈H?

|g′(h(0))|s1/2|h′(0)|(s1+s2)/2 = (I −Gs1+s2)
−1◦Gs1 [1](0)

Proof of the alternative expression for the Dirichlet generating function (` = 2)

ζ(s1)ζ(s2) = ζ(s1 + s2)
(1

2
(I −Gs1+s2)−1 ◦ (Gs1 + Gs2)

)
[1](0)

with Gs[f](t) =
∑
h∈H

|h′(t)|s/2f ◦ h(t) =
∑
m≥1

(
1

m+ t

)s
f

(
1

m+ t

)
Proof. The Dirichlet generating function of the inputs is∑

(a1,a2)∈N2

1

as11

1

as22
= ζ(s1) · ζ(s2), ζ(s) =

∑
a∈N

1

as

With the gcd y: ζ(s1)ζ(s2) =

∑
y≥1

1

ys1+s2

 ∑

(u1,u2)∈N2
gcd(u1,u2)=1

1

us1
1

1

us2
2

Using LFT’s as in the previous slide :∑
(u1,u2),u2≤u1
gcd(u1,u2)=1

1

us1
1

1

us2
2

=
∑
g∈H,
h∈H?

|(g ◦h)′(0)|s1/2|h′(0)|s2/2

=
∑
g∈H,
h∈H?

|g′(h(0))|s1/2|h′(0)|(s1+s2)/2 = (I −Gs1+s2)
−1◦Gs1 [1](0)

Proof of the alternative expression for the Dirichlet generating function (` = 2)

ζ(s1)ζ(s2) = ζ(s1 + s2)
(1

2
(I −Gs1+s2)−1 ◦ (Gs1 + Gs2)

)
[1](0)

with Gs[f](t) =
∑
h∈H

|h′(t)|s/2f ◦ h(t) =
∑
m≥1

(
1

m+ t

)s
f

(
1

m+ t

)
Proof. The Dirichlet generating function of the inputs is∑

(a1,a2)∈N2

1

as11

1

as22
= ζ(s1) · ζ(s2), ζ(s) =

∑
a∈N

1

as

With the gcd y: ζ(s1)ζ(s2) =

∑
y≥1

1

ys1+s2

 ∑

(u1,u2)∈N2
gcd(u1,u2)=1

1

us1
1

1

us2
2

Using LFT’s as in the previous slide :∑
(u1,u2),u2≤u1
gcd(u1,u2)=1

1

us1
1

1

us2
2

=
∑
g∈H,
h∈H?

|(g ◦h)′(0)|s1/2|h′(0)|s2/2

=
∑
g∈H,
h∈H?

|g′(h(0))|s1/2|h′(0)|(s1+s2)/2

= (I −Gs1+s2)
−1◦Gs1 [1](0)

Proof of the alternative expression for the Dirichlet generating function (` = 2)

ζ(s1)ζ(s2) = ζ(s1 + s2)
(1

2
(I −Gs1+s2)−1 ◦ (Gs1 + Gs2)

)
[1](0)

with Gs[f](t) =
∑
h∈H

|h′(t)|s/2f ◦ h(t) =
∑
m≥1

(
1

m+ t

)s
f

(
1

m+ t

)
Proof. The Dirichlet generating function of the inputs is∑

(a1,a2)∈N2

1

as11

1

as22
= ζ(s1) · ζ(s2), ζ(s) =

∑
a∈N

1

as

With the gcd y: ζ(s1)ζ(s2) =

∑
y≥1

1

ys1+s2

 ∑

(u1,u2)∈N2
gcd(u1,u2)=1

1

us1
1

1

us2
2

Using LFT’s as in the previous slide :∑
(u1,u2),u2≤u1
gcd(u1,u2)=1

1

us1
1

1

us2
2

=
∑
g∈H,
h∈H?

|(g ◦h)′(0)|s1/2|h′(0)|s2/2

=
∑
g∈H,
h∈H?

|g′(h(0))|s1/2|h′(0)|(s1+s2)/2 = (I −Gs1+s2)
−1◦Gs1 [1](0)

The Euclid algorithm (` = 2) on integers

translates as a product of Dirichlet generating functions

ζ(s1) ζ(s2) = T (s1, s2) ζ(s1 + s2),

with T (s1, s2) =
1

2
(1−Gs1+s2)−1 ◦ (Gs1 + Gs2) [1](0)

Then, for any ` ≥ 2, the `–Euclid algorithm translates as the product

ζ(s1) · . . . · ζ(s`) = ζ(t`)
`−1∏
k=1

T (sk+1, tk) [tk := s1 + s2 + . . .+ sk,]

Now, with s = s1 = . . . = s`,

the (plain) generating function S(s) of N` has an alternative expression

S(s) = ζ(s)` = ζ(`s)

`−1∏
k=1

T (s, ks)

which is an exact translation of the `-Euclid algorithm.

T is the “phase generating function”.

The Euclid algorithm (` = 2) on integers

translates as a product of Dirichlet generating functions

ζ(s1) ζ(s2) = T (s1, s2) ζ(s1 + s2),

with T (s1, s2) =
1

2
(1−Gs1+s2)−1 ◦ (Gs1 + Gs2) [1](0)

Then, for any ` ≥ 2, the `–Euclid algorithm translates as the product

ζ(s1) · . . . · ζ(s`) = ζ(t`)

`−1∏
k=1

T (sk+1, tk) [tk := s1 + s2 + . . .+ sk,]

Now, with s = s1 = . . . = s`,

the (plain) generating function S(s) of N` has an alternative expression

S(s) = ζ(s)` = ζ(`s)

`−1∏
k=1

T (s, ks)

which is an exact translation of the `-Euclid algorithm.

T is the “phase generating function”.

The Euclid algorithm (` = 2) on integers

translates as a product of Dirichlet generating functions

ζ(s1) ζ(s2) = T (s1, s2) ζ(s1 + s2),

with T (s1, s2) =
1

2
(1−Gs1+s2)−1 ◦ (Gs1 + Gs2) [1](0)

Then, for any ` ≥ 2, the `–Euclid algorithm translates as the product

ζ(s1) · . . . · ζ(s`) = ζ(t`)

`−1∏
k=1

T (sk+1, tk) [tk := s1 + s2 + . . .+ sk,]

Now, with s = s1 = . . . = s`,

the (plain) generating function S(s) of N` has an alternative expression

S(s) = ζ(s)` = ζ(`s)
`−1∏
k=1

T (s, ks)

which is an exact translation of the `-Euclid algorithm.

T is the “phase generating function”.

Bivariate Generating functions for the `-Euclid Algorithm

We start with: S(s) = ζ(s)` = ζ(`s)

`−1∏
k=1

T (s, ks)

For studying the distribution of the two costs :

– Lk (number of steps in the k-th phase)

– Dk (size of the gcd at the beginning of the k-th phase)

we use bivariate generating functions, with an extra variable u

Lk(s, u) = ζ(s)` · T (s, ks, u)

T (s, ks)
, Dk(s, u) = ζ(s)` · Z(ks, u)

ζ(ks)
,

T (s, t, u) =
1

2
u(1−uGs+t)

−1 ◦ (Gs+Gt)[1](0), Z(s, u) =
∑
n≥1

ud(n)

ns

Bivariate Generating functions for the `-Euclid Algorithm

We start with: S(s) = ζ(s)` = ζ(`s)

`−1∏
k=1

T (s, ks)

For studying the distribution of the two costs :

– Lk (number of steps in the k-th phase)

– Dk (size of the gcd at the beginning of the k-th phase)

we use bivariate generating functions, with an extra variable u

Lk(s, u) = ζ(s)` · T (s, ks, u)

T (s, ks)
, Dk(s, u) = ζ(s)` · Z(ks, u)

ζ(ks)
,

T (s, t, u) =
1

2
u(1−uGs+t)

−1 ◦ (Gs+Gt)[1](0), Z(s, u) =
∑
n≥1

ud(n)

ns

Bivariate Generating functions for the `-Euclid Algorithm

We start with: S(s) = ζ(s)` = ζ(`s)

`−1∏
k=1

T (s, ks)

For studying the distribution of the two costs :

– Lk (number of steps in the k-th phase)

– Dk (size of the gcd at the beginning of the k-th phase)

we use bivariate generating functions, with an extra variable u

Lk(s, u) = ζ(s)` · T (s, ks, u)

T (s, ks)
, Dk(s, u) = ζ(s)` · Z(ks, u)

ζ(ks)
,

T (s, t, u) =
1

2
u(1−uGs+t)

−1 ◦ (Gs+Gt)[1](0), Z(s, u) =
∑
n≥1

ud(n)

ns

Towards the distributional analysis of Lk and Dk.

The generating functions of the events [Lk > m] and [Dk > m]

L̂
[m]
k (s) :=

∑
j>m

[uj]Lk(s, u), D̂
[m]
k (s) =

∑
j>m

[uj]Dk(s, u)

admit the alternative expressions:

with ζM (s) :=
∑
n≥M

1

ns
and ϕs,t some “nice” function,

D̂
[m]
k (s) = ζ(s)` · ζe

m(ks)

ζ(ks)
L̂

[m]
k (s) = ζ(s)` · Gm

(k+1)s[ϕks,s](0)

both of type B(s) · Ak,m(s), with Ak,m(s) ≈ Amk (s)

Ak(s) = λ((k + 1)s) [L–case] Ak(s) = exp[1− ks] [D–case]

The asymptotics depends on the value a := Ak(1) at the pole s = 1 of B(s)

For k = 1, one has a = 1 – For k ≥ 2, one has a < 1.

Towards the distributional analysis of Lk and Dk.

The generating functions of the events [Lk > m] and [Dk > m]

L̂
[m]
k (s) :=

∑
j>m

[uj]Lk(s, u), D̂
[m]
k (s) =

∑
j>m

[uj]Dk(s, u)

admit the alternative expressions:

with ζM (s) :=
∑
n≥M

1

ns
and ϕs,t some “nice” function,

D̂
[m]
k (s) = ζ(s)` · ζe

m(ks)

ζ(ks)
L̂

[m]
k (s) = ζ(s)` · Gm

(k+1)s[ϕks,s](0)

both of type B(s) · Ak,m(s), with Ak,m(s) ≈ Amk (s)

Ak(s) = λ((k + 1)s) [L–case] Ak(s) = exp[1− ks] [D–case]

The asymptotics depends on the value a := Ak(1) at the pole s = 1 of B(s)

For k = 1, one has a = 1 – For k ≥ 2, one has a < 1.

Towards the distributional analysis of Lk and Dk.

The generating functions of the events [Lk > m] and [Dk > m]

L̂
[m]
k (s) :=

∑
j>m

[uj]Lk(s, u), D̂
[m]
k (s) =

∑
j>m

[uj]Dk(s, u)

admit the alternative expressions:

with ζM (s) :=
∑
n≥M

1

ns
and ϕs,t some “nice” function,

D̂
[m]
k (s) = ζ(s)` · ζe

m(ks)

ζ(ks)
L̂

[m]
k (s) = ζ(s)` · Gm

(k+1)s[ϕks,s](0)

both of type B(s) · Ak,m(s), with Ak,m(s) ≈ Amk (s)

Ak(s) = λ((k + 1)s) [L–case] Ak(s) = exp[1− ks] [D–case]

The asymptotics depends on the value a := Ak(1) at the pole s = 1 of B(s)

For k = 1, one has a = 1 – For k ≥ 2, one has a < 1.

Towards the distributional analysis of Lk and Dk.

The generating functions of the events [Lk > m] and [Dk > m]

L̂
[m]
k (s) :=

∑
j>m

[uj]Lk(s, u), D̂
[m]
k (s) =

∑
j>m

[uj]Dk(s, u)

admit the alternative expressions:

with ζM (s) :=
∑
n≥M

1

ns
and ϕs,t some “nice” function,

D̂
[m]
k (s) = ζ(s)` · ζe

m(ks)

ζ(ks)
L̂

[m]
k (s) = ζ(s)` · Gm

(k+1)s[ϕks,s](0)

both of type B(s) · Ak,m(s), with Ak,m(s) ≈ Amk (s)

Ak(s) = λ((k + 1)s) [L–case] Ak(s) = exp[1− ks] [D–case]

The asymptotics depends on the value a := Ak(1) at the pole s = 1 of B(s)

For k = 1, one has a = 1 – For k ≥ 2, one has a < 1.

Main result for the number of divisions Lk – First phase (k = 1)

The number of divisions L1 performed during the first phase

– has a mean value of linear order

En[L1] =
6 log 2

π2

n

`

[
1 +O

(
1

n

)]
π2

6 log 2
= entropy

– follows an asymptotic beta law of parameter (1, `− 1).

Its distribution satisfies when n→∞, and m/n ∈ [0, (6 log 2)/π2]

P[L1 > m] =

(
1− m

n

π2

6 log 2

)`−1

+O

(
1

nα

)

Main result for the number of divisions Lk – First phase (k = 1)

The number of divisions L1 performed during the first phase

– has a mean value of linear order

En[L1] =
6 log 2

π2

n

`

[
1 +O

(
1

n

)]
π2

6 log 2
= entropy

– follows an asymptotic beta law of parameter (1, `− 1).

Its distribution satisfies when n→∞, and m/n ∈ [0, (6 log 2)/π2]

P[L1 > m] =

(
1− m

n

π2

6 log 2

)`−1

+O

(
1

nα

)

Main result for the number of divisions Lk – First phase (k = 1)

The number of divisions L1 performed during the first phase

– has a mean value of linear order

En[L1] =
6 log 2

π2

n

`

[
1 +O

(
1

n

)]
π2

6 log 2
= entropy

– follows an asymptotic beta law of parameter (1, `− 1).

Its distribution satisfies when n→∞, and m/n ∈ [0, (6 log 2)/π2]

P[L1 > m] =

(
1− m

n

π2

6 log 2

)`−1

+O

(
1

nα

)

Main result for the number of divisions Lk – First phase (k = 1)

The number of divisions L1 performed during the first phase

– has a mean value of linear order

En[L1] =
6 log 2

π2

n

`

[
1 +O

(
1

n

)]
π2

6 log 2
= entropy

– follows an asymptotic beta law of parameter (1, `− 1).

Its distribution satisfies when n→∞, and m/n ∈ [0, (6 log 2)/π2]

P[L1 > m] =

(
1− m

n

π2

6 log 2

)`−1

+O

(
1

nα

)

Main result for the number of divisions Lk – Subsequent phases (case k ≥ 2)

For k ≥ 2, the number of divisions during the k-th phase

– has a mean value of constant order

En[Lk] = (I −Gk+1)−1[ϕk,1](0) +O

(
1

n

)
– follows an asymptotic quasi-geometric law, with quasi–ratio λ(k + 1)

For n→∞ and m/n ∈ [0, |λ(k + 1)/λ′(k + 1)|],

Pn[Lk > m] = Gm
k+1[ϕk,1](0) +O

(
log n

n

)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5 6 7 8 9 10

p
ro

b
a
b
ili

ty
 d

e
n
si

ty

value

Main result for the number of divisions Lk – Subsequent phases (case k ≥ 2)

For k ≥ 2, the number of divisions during the k-th phase

– has a mean value of constant order

En[Lk] = (I −Gk+1)−1[ϕk,1](0) +O

(
1

n

)

– follows an asymptotic quasi-geometric law, with quasi–ratio λ(k + 1)

For n→∞ and m/n ∈ [0, |λ(k + 1)/λ′(k + 1)|],

Pn[Lk > m] = Gm
k+1[ϕk,1](0) +O

(
log n

n

)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5 6 7 8 9 10

p
ro

b
a
b
ili

ty
 d

e
n
si

ty

value

Main result for the number of divisions Lk – Subsequent phases (case k ≥ 2)

For k ≥ 2, the number of divisions during the k-th phase

– has a mean value of constant order

En[Lk] = (I −Gk+1)−1[ϕk,1](0) +O

(
1

n

)
– follows an asymptotic quasi-geometric law, with quasi–ratio λ(k + 1)

For n→∞ and m/n ∈ [0, |λ(k + 1)/λ′(k + 1)|],

Pn[Lk > m] = Gm
k+1[ϕk,1](0) +O

(
log n

n

)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5 6 7 8 9 10

p
ro

b
a
b
ili

ty
 d

e
n
si

ty

value

Main result for the number of divisions Lk – Subsequent phases (case k ≥ 2)

For k ≥ 2, the number of divisions during the k-th phase

– has a mean value of constant order

En[Lk] = (I −Gk+1)−1[ϕk,1](0) +O

(
1

n

)
– follows an asymptotic quasi-geometric law, with quasi–ratio λ(k + 1)

For n→∞ and m/n ∈ [0, |λ(k + 1)/λ′(k + 1)|],

Pn[Lk > m] = Gm
k+1[ϕk,1](0) +O

(
log n

n

)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5 6 7 8 9 10

p
ro

b
a
b
ili

ty
 d

e
n
si

ty

value

IV. An unified point of view for the two analyses?

A dynamical point of view....

The underlying dynamical system in the integer case

defined by the pair ([0, 1], V).

V : [0, 1] −→ [0, 1], V (x) :=
1

x
−
⌊

1

x

⌋
for x 6= 0, V (0) = 0

The set of the inverse branches of V is{
hm(x) =

1

m+ x

}
It builds the continued fraction expansions.

The operator Gs is the transfer operator of the dynamical system.

It involves the derivatives of the inverse branches of V

Gs[f](x) =
∑
m≥1

(
1

m+ x

)s
f

(
1

m+ x

)

The underlying dynamical system in the integer case defined by the pair ([0, 1], V).

V : [0, 1] −→ [0, 1], V (x) :=
1

x
−
⌊

1

x

⌋
for x 6= 0, V (0) = 0

The set of the inverse branches of V is{
hm(x) =

1

m+ x

}
It builds the continued fraction expansions.

The operator Gs is the transfer operator of the dynamical system.

It involves the derivatives of the inverse branches of V

Gs[f](x) =
∑
m≥1

(
1

m+ x

)s
f

(
1

m+ x

)

The underlying dynamical system in the integer case defined by the pair ([0, 1], V).

V : [0, 1] −→ [0, 1], V (x) :=
1

x
−
⌊

1

x

⌋
for x 6= 0, V (0) = 0

The set of the inverse branches of V is{
hm(x) =

1

m+ x

}
It builds the continued fraction expansions.

The operator Gs is the transfer operator of the dynamical system.

It involves the derivatives of the inverse branches of V

Gs[f](x) =
∑
m≥1

(
1

m+ x

)s
f

(
1

m+ x

)

The underlying dynamical system in the polynomial case.

The exact ultrametric analog of the DS in the integer case.

Fq[Z]←→ Z, Fq(Z)←→ Q, Fq((1/Z))←→ R
Fq((1/Z)): the completion of Fq[Z] for the ultrametric norm ||u|| := qd(u).

The integer part function b·c satisfies bfc = 0 iff ||f || ≤ 1

Dynamical system: (Xq, V) with

X q := {f ∈ Fq((1/Z)); ||f || ≤ 1} and

V : Xq → Xq V (x) =
1

x
−
⌊

1

x

⌋
(x 6= 0), V (0) = 0.

The transfer operator Gs is defined with the inverse branches of V ,

Gs[f](x) =
∑

m,||m||≥1

1

‖m+ x‖s
f

(
1

m+ x

)

Ultrametric norm =⇒ ||m+ x|| = ||m|| =⇒ Gs[1] =
∑

m,||m||>1

1

||m||s

Gs[1] =
∑

m,d(m)>0

1

qd(m)s
= the power generating functionG(z) with z = q−s

Classical analysis for polynomials: a particular case of a dynamical analysis

The underlying dynamical system in the polynomial case.

The exact ultrametric analog of the DS in the integer case.

Fq[Z]←→ Z, Fq(Z)←→ Q, Fq((1/Z))←→ R
Fq((1/Z)): the completion of Fq[Z] for the ultrametric norm ||u|| := qd(u).

The integer part function b·c satisfies bfc = 0 iff ||f || ≤ 1

Dynamical system: (Xq, V) with

X q := {f ∈ Fq((1/Z)); ||f || ≤ 1} and

V : Xq → Xq V (x) =
1

x
−
⌊

1

x

⌋
(x 6= 0), V (0) = 0.

The transfer operator Gs is defined with the inverse branches of V ,

Gs[f](x) =
∑

m,||m||≥1

1

‖m+ x‖s
f

(
1

m+ x

)

Ultrametric norm =⇒ ||m+ x|| = ||m|| =⇒ Gs[1] =
∑

m,||m||>1

1

||m||s

Gs[1] =
∑

m,d(m)>0

1

qd(m)s
= the power generating functionG(z) with z = q−s

Classical analysis for polynomials: a particular case of a dynamical analysis

The underlying dynamical system in the polynomial case.

The exact ultrametric analog of the DS in the integer case.

Fq[Z]←→ Z, Fq(Z)←→ Q, Fq((1/Z))←→ R
Fq((1/Z)): the completion of Fq[Z] for the ultrametric norm ||u|| := qd(u).

The integer part function b·c satisfies bfc = 0 iff ||f || ≤ 1

Dynamical system: (Xq, V) with

X q := {f ∈ Fq((1/Z)); ||f || ≤ 1} and

V : Xq → Xq V (x) =
1

x
−
⌊

1

x

⌋
(x 6= 0), V (0) = 0.

The transfer operator Gs is defined with the inverse branches of V ,

Gs[f](x) =
∑

m,||m||≥1

1

‖m+ x‖s
f

(
1

m+ x

)

Ultrametric norm =⇒ ||m+ x|| = ||m|| =⇒ Gs[1] =
∑

m,||m||>1

1

||m||s

Gs[1] =
∑

m,d(m)>0

1

qd(m)s
= the power generating functionG(z) with z = q−s

Classical analysis for polynomials: a particular case of a dynamical analysis

The underlying dynamical system in the polynomial case.

The exact ultrametric analog of the DS in the integer case.

Fq[Z]←→ Z, Fq(Z)←→ Q, Fq((1/Z))←→ R
Fq((1/Z)): the completion of Fq[Z] for the ultrametric norm ||u|| := qd(u).

The integer part function b·c satisfies bfc = 0 iff ||f || ≤ 1

Dynamical system: (Xq, V) with

X q := {f ∈ Fq((1/Z)); ||f || ≤ 1} and

V : Xq → Xq V (x) =
1

x
−
⌊

1

x

⌋
(x 6= 0), V (0) = 0.

The transfer operator Gs is defined with the inverse branches of V ,

Gs[f](x) =
∑

m,||m||≥1

1

‖m+ x‖s
f

(
1

m+ x

)

Ultrametric norm =⇒ ||m+ x|| = ||m|| =⇒ Gs[1] =
∑

m,||m||>1

1

||m||s

Gs[1] =
∑

m,d(m)>0

1

qd(m)s
= the power generating functionG(z) with z = q−s

Classical analysis for polynomials: a particular case of a dynamical analysis

The underlying dynamical system in the polynomial case.

The exact ultrametric analog of the DS in the integer case.

Fq[Z]←→ Z, Fq(Z)←→ Q, Fq((1/Z))←→ R
Fq((1/Z)): the completion of Fq[Z] for the ultrametric norm ||u|| := qd(u).

The integer part function b·c satisfies bfc = 0 iff ||f || ≤ 1

Dynamical system: (Xq, V) with

X q := {f ∈ Fq((1/Z)); ||f || ≤ 1} and

V : Xq → Xq V (x) =
1

x
−
⌊

1

x

⌋
(x 6= 0), V (0) = 0.

The transfer operator Gs is defined with the inverse branches of V ,

Gs[f](x) =
∑

m,||m||≥1

1

‖m+ x‖s
f

(
1

m+ x

)

Ultrametric norm =⇒ ||m+ x|| = ||m|| =⇒ Gs[1] =
∑

m,||m||>1

1

||m||s

Gs[1] =
∑

m,d(m)>0

1

qd(m)s
= the power generating functionG(z) with z = q−s

Classical analysis for polynomials: a particular case of a dynamical analysis

The underlying dynamical system in the polynomial case.

The exact ultrametric analog of the DS in the integer case.

Fq[Z]←→ Z, Fq(Z)←→ Q, Fq((1/Z))←→ R
Fq((1/Z)): the completion of Fq[Z] for the ultrametric norm ||u|| := qd(u).

The integer part function b·c satisfies bfc = 0 iff ||f || ≤ 1

Dynamical system: (Xq, V) with

X q := {f ∈ Fq((1/Z)); ||f || ≤ 1} and

V : Xq → Xq V (x) =
1

x
−
⌊

1

x

⌋
(x 6= 0), V (0) = 0.

The transfer operator Gs is defined with the inverse branches of V ,

Gs[f](x) =
∑

m,||m||≥1

1

‖m+ x‖s
f

(
1

m+ x

)

Ultrametric norm =⇒ ||m+ x|| = ||m|| =⇒ Gs[1] =
∑

m,||m||>1

1

||m||s

Gs[1] =
∑

m,d(m)>0

1

qd(m)s
= the power generating functionG(z) with z = q−s

Classical analysis for polynomials: a particular case of a dynamical analysis

General conclusions.

Methodologic point of view.

– A simple (but not trivial) instance of analysis of algorithms

– Classical analysis versus dynamical analysis

– Provides precise distributional results.

– With an (unexpected) occurrence of the Beta law

– Can be extended to the analysis of the bit complexity [work in progress]

Algorithmic point of view.

– This plain strategy is proven to be efficient.

– To be compared to other strategies

– Random scalar products [Von Zur Gathen, Shparlinski],

Compute a unique gcd between two random scalar products

– Brun’s algorithm : [Joint work in progress with Berthé and Lhote]

General conclusions.

Methodologic point of view.

– A simple (but not trivial) instance of analysis of algorithms

– Classical analysis versus dynamical analysis

– Provides precise distributional results.

– With an (unexpected) occurrence of the Beta law

– Can be extended to the analysis of the bit complexity [work in progress]

Algorithmic point of view.

– This plain strategy is proven to be efficient.

– To be compared to other strategies

– Random scalar products [Von Zur Gathen, Shparlinski],

Compute a unique gcd between two random scalar products

– Brun’s algorithm : [Joint work in progress with Berthé and Lhote]

General conclusions.

Methodologic point of view.

– A simple (but not trivial) instance of analysis of algorithms

– Classical analysis versus dynamical analysis

– Provides precise distributional results.

– With an (unexpected) occurrence of the Beta law

– Can be extended to the analysis of the bit complexity [work in progress]

Algorithmic point of view.

– This plain strategy is proven to be efficient.

– To be compared to other strategies

– Random scalar products [Von Zur Gathen, Shparlinski],

Compute a unique gcd between two random scalar products

– Brun’s algorithm : [Joint work in progress with Berthé and Lhote]

General conclusions.

Methodologic point of view.

– A simple (but not trivial) instance of analysis of algorithms

– Classical analysis versus dynamical analysis

– Provides precise distributional results.

– With an (unexpected) occurrence of the Beta law

– Can be extended to the analysis of the bit complexity [work in progress]

Algorithmic point of view.

– This plain strategy is proven to be efficient.

– To be compared to other strategies

– Random scalar products [Von Zur Gathen, Shparlinski],

Compute a unique gcd between two random scalar products

– Brun’s algorithm : [Joint work in progress with Berthé and Lhote]

General conclusions.

Methodologic point of view.

– A simple (but not trivial) instance of analysis of algorithms

– Classical analysis versus dynamical analysis

– Provides precise distributional results.

– With an (unexpected) occurrence of the Beta law

– Can be extended to the analysis of the bit complexity [work in progress]

Algorithmic point of view.

– This plain strategy is proven to be efficient.

– To be compared to other strategies

– Random scalar products [Von Zur Gathen, Shparlinski],

Compute a unique gcd between two random scalar products

– Brun’s algorithm : [Joint work in progress with Berthé and Lhote]

