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For ¢ = 2: the “classical” Euclid algorithm :
a sequence of Euclidean divisions
For ¢ > 3, there are various strategies.

The plain algorithm performs a sequence of computations on two entries;

On the input (21, x2,...,x¢), it computes

— first: yo := ged(xq, x2)

—then, for k € [3.4]: vy := ged(zg, yp—1) = ged(zq, 2o, ..., 2p).
The “total” ged yp := ged(x1, 2o, ..., xy) is obtained after £ — 1 phases.

Each phase performs a call to the classical Euclid algorithm.

The same formal scheme
— for polynomials over a finite field: F,[X]
— for numbers : positive integers.

A very natural scheme, proposed in Knuth's book.....
but not yet analyzed for £ > 2 (Problem HM 48)
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Which behavior can be expected?

Knuth wrote: “In most cases, the size of the partial gcd decreases rapidly
during the first few phases of the calculation.
This will make the remainder of the computation quite fast”.

Our analysis exhibits a more precise phenomenon:
A strong difference between the first phase and the subsequent phases.

In most cases, “almost all the calculation” is done during the first phase.

We prove the following facts about the number of divisions performed,
measured with respect to the size of the input:
— during the first phase:

— it is linear on average,
— it asymptotically follows a beta law;

— during subsequent phases:
— it is constant on average
— it asymptotically follows a geometric law

The same phenomena occur for the size of the partial gcd.
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|. Probabilistic analysis of algorithms.
Based on Analytic Combinatorics and Generating Functions.

lI. Analysis of the polynomial case.
Based on Analytic Combinatorics and power Generating Functions.

[I1. Analysis of the integer case.
Based on Dynamical Combinatorics and Dirichlet Generating Functions

IV. An unified point of view for the two analyses?

A dynamical point of view.
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Probabilistic analysis of an algorithm

— The set of the possible inputs for the algorithm is denoted by €.

— There is a size function d : Q2 — N.
— The subset Q,, := {w : d(w) = n} is finite
— It is endowed with the uniform distribution P,,.

— There is a cost function L : 2 — N,
— study the probabilistic behavior of L on each 2,
— estimate its mean, its variance, its distribution,

— in an asymptotic way (for n — 00).

L* n
Eu[L] ~ @n, Va[l] ~ bn, P, e+ da]| ~ f(x)da

n—00 n—00 by, n—00
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x-axis: possible values of the cost L(w) y-axis: probability density x — f(x)
f(z)dz :==Plw; L(w) € [x,z + dz]]
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Usual analysis for the Euclid Algorithm ¢ = 2.

The usual size of z = (z1,22) is the maximum of the sizes of the inputs:
d(z) := max(d(z1),d(z2)).
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— the number L of steps — the size D of the output gcd.
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Usual analysis for the Euclid Algorithm ¢ = 2.

The usual size of z = (z1, z2) is the maximum of the sizes of the inputs:
d(z) := max(d(z1),d(z2)).
The two costs of interest are :

— the number L of steps — the size D of the output gcd.

Main results:

The number L of divisions
has a mean value E,[L] of linear order;
Its distribution is asymptotically gaussian.

The size D of the gcd
has a mean value E,[D] of constant order;
Its distribution is asymptotically geometric.

This (usual) size is not adapted for a number of inputs ¢ > 2.
For ¢ > 2, we consider the total size and this choice modifies the results

= lIrruption of the (unexpected) beta law
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Analysis of algorithms and generating functions.

Two main cases here, depending on
— the type of the input z = (z1,22,...,2¢), z; € Nor z; € F [X]
— the natural size on the input : the size of [] ;.

— for polynomials: the total degree d(z) =d(J]z:) = > d(xy)
Qp i={z = (x1,22,...,2¢0); d([Jz:) =n}
Power generating functions for polynomials
S(2) =32 = 0] = ["])S(2)
€N
— for integers: the total length  d(z) = [log[] x| ~ > [log ;|
Qn = {&Z(xlaan"'axl); engnxi<en+l}
Dirichlet generating functions for integers

Sis) =Y (le)™* = |ul= > [N7IS(s)

€N en<N<entl



Analysis of algorithms and generating functions (I1).

|Qn,7n|
P,[L=m]= o

Numerators are expressed with coefficients of bivariate generating functions.

with  Q,., ={z € Q,; L(z)=m}

For polynomials:
Qum = {z = (x1,22,...,2¢}; d([[@:) =n, L(z) =m}
S(Z) .— Z Zd(H 11)7 S(Z,u) = Z Zd(nxi)u[,(g)

zeQ zeQ

[Znum}s(z7 u)

]P)n [L = ’I’n] = —_—

[2"]S(2)
For integers:
Qn,m = {QZ ($1,$2,. . .,J}g); e < Hmz < en+17 L(g) _ m}
S(s) == Z(H x;)” ", S(s,u) := Z(H xi)*%ﬁ(&%
z€Q z€Q
S NS (s, )
en< N<en+tl
P,[L =m]=—= :
| | [N=]5(s)

6"’§N<€"+l



Analysis of algorithms and generating functions (GF): main principles.

Distributional analysis is related
— to the asymptotic behaviour of coefficients of the BGF's
— obtained with two steps:

Combinatorial step.
Translate the structure of the algorithm on the generating functions:
— obtain an algorithmic expression of the generating function,

— from which the dominant singularity becomes apparent.

Analytic step.
For any GF, the asymptotic behaviour of coefficients is related to
— the position and the nature of its dominant singularity
— when the GF is viewed as a function of the complex variable.
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Distributional analysis is related
— to the asymptotic behaviour of coefficients of the BGF's
— obtained with two steps:

Combinatorial step.
Translate the structure of the algorithm on the generating functions:
— obtain an algorithmic expression of the generating function,

— from which the dominant singularity becomes apparent.

Analytic step.
For any GF, the asymptotic behaviour of coefficients is related to
— the position and the nature of its dominant singularity
— when the GF is viewed as a function of the complex variable.

The same principles in the two analyses and two main differences.

— Dirichlet GF's more difficult to study than power GF's
— For integers, there are correlations due to carries.



[I. Analysis of the polynomial case.

Based on Analytic Combinatorics
and Generating Functions
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Probabilistic analysis of the plain /~GCD algorithm on F,[X].

On the input (21, x2,...,x¢),
— the algorithm computes the total ged vy := ged (21, 22, ..., /)
— with / — 1 phases.
— The k-th phase computes the k—th gcd,

— each phase performs the classical Euclid algorithm
via a sequence of Euclidean divisions

The size of an input : d(z1,...,2¢) =d(z1) + ... + d(zy),

The set of inputs is Q = {(x1,...,2¢); x; monic € F,[X]}
with d(z) := deg(x).

Main costs of interest
— the number L;, of divisions during the k—th phase
i.e. on the input (zx,yxr—1)
— the degree Dy, of the k—th gcd
(at the beginning of the k-th phase).
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Euclid(ai,a2), [case d(a1) > d(a2)].
a1 = mias + as 0 < d(as3) < d(az2)
as = mo a3 + a4 0< d(a4) < d(ag)
= +
Ar—1 = Myr—1 Qr + Ar41 0 < d(ar+1) < d(a'r)
ar = My Ar4-1 + 0
The last non zero remainder is the gcd y. Here y = a,41.

The Euclid Algorithm is then extended to the case when d(a1) < d(a2),
by letting Euclid(a1, az) := Euclid(az, a1)

The pair (a1, a2) of monic polynomials is entirely determined by
— the sequence of quotients (my,ma, ..., m,), where
— the first quotient m is monic, with
d(mq) > 0 [d(a1) > d(az)] or d(mq) > 0 [d(az) > d(az)]
— any quotient m; for ¢ € [2..r] is general with d(m;) > 0
— the monic ged vy = a4 1.
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Generating functions relative to the Euclid algorithm (¢ = 2).

U(z) is the gen. function of the set & of monic polynomials
G(z) is the gen. function of the general non constant polynomials

U= S0 6= - D -1 = G0

Q=Uu? 2 {first quotient} x  {sequence of quotients} x {GCD}
(a1,as2) ~ my X (ma,...,m.) X Y
U(z1)U(z2) = Ulz) +[U(z2) —1] - E e — - Ulai22)

1-— G(leg)
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Proof of the decomposition:

1
1-— G(lez)

There are two cases : (I)  d(a1) > d(az2) or (II)  d(az2) > d(a1)

U(z1) U(z2) = U(21) + [U(22) — 1] - -U(2122)

Euclid(ai, a2), [case d(a1) > d(a2)].
ai = mi as —+ as d(al) = d(ml) + d(az)
as = mo as —+ a4 d(az) = d(mQ) —+ d(ag)
= + . C
Ar—1 = Mr—10ar + QAr41 d(arfl) = d(m'rfl) + d(a/'r)
Qr = mry + 0 d(ar) = d(mﬂ") +d(y)
d(a1) = d(mi1) 4+ d(m2)+...+d(m,) + d(y)
d(a2) = dim2) +...+d(my) + d(y)
Z?(al) Z;(ag) _ Z;i(ml) (lez) d(ma)+...+d(my) (leQ)d(y)
d(a1) = d(mz2)+...+d(m,) + d(y)
d(a2) = d(mi) + dim2)+...+d(m.) + d(y)
Zii(al) Zg(%) _ Z;(”’l) (ZIZQ)d(Tnz)-!—m-Fd(mr) . (2122)(1(!/)
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We have shown that the Euclid algorithm (¢ = 2) translates as a product
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Then, for any £ > 2, the /—Euclid algorithm translates as the product
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Algorithmic expression of the GF of the /-Euclid Algorithm

We have shown that the Euclid algorithm (¢ = 2) translates as a product

1-— G(leg)

U(z1)U(z2) = T (21, 22) U(z122), with  T'(z1,292) =

Then, for any £ > 2, the /—Euclid algorithm translates as the product

—1
U(z1) - Ulze) = U(te) [[TCGrinste)  ftr=21-22-... - 2]
k=1
Now, with z = 2z = ... = zy,

the (plain) generating function S(z) of U* has the alternative expression

which is an exact translation of the /-Euclid algorithm.

T is the “phase generating function”.
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Bivariate Generating Functions relative to the ¢-Euclid Algorithm

We start with: S(z)=U(2)! =U(2Y) H T(z, %)

For studying the distribution of the two costs :

— Lyj, (number of steps in the k-th phase)

— Dy, (degree of the ged at the beginning of the k-th phase)
we use bivariate generating functions,

with an extra variable u which marks the cost

2,28 u Z*,u
With:
T(zt,u) = u%7 U(t,u) = 1 —1qut'



Towards the distributional analysis of L; and Dj.

N WLz u) Y sk (2, 0) ML ()
Py[Ly > m] = Z "S(z) [z"]S(2) IERES)

j>m

Wiz Dy(z,u) (210 [0/]Dk(z,0) (27D (2)

P, [Dy > m] = Z [2"]S(2) - [27]S(z) - [2"]5(2)
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Towards the distributional analysis of L; and Dj.

[z L (z) B[] Lk(z0)  MER ()

Pn [Lk > ’n?/] = ];n [Zn]S(Z) = [Zn]S(Z) - [ZH]S(Z)
m] = [u 2" Dy, (z,u) 2712 o [0 D (2, w) — [zn]f)}[:”](z)
Pu[Dy >m] =Y S 7S (2) RS

j>m

The generating functions “of the numerators” are
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both of type



Towards the distributional analysis of L; and Dj.

m| = [ujz"]Lk(z,u) _ [Zn]z.7‘>m[uj}[’k(27u) _ [Zn]zgﬁm](z)
B e S e e 7 e T R PO

j>m

Jom ik . ul (z.u pe Alm] .
PD > m = 3 WD) B 1Dk ) D ()

[2"]5(2) [27]5(2) [27]5(2)

j>m
The generating functions “of the numerators” are

Tm 1 : m m
LEC ](Z)ZW'G(Zkﬂ) ) Dl[c ](2):7"

both of t —
oth of type A=)
The asymptotics depends on the value a := Ay (1/q) at the pole z =1/q
— For the first phase k =1, one hasa =1
— For the subsequent phases k& > 2, one has a < 1



A general result for the asymptotics of coefficients

1
Consider the function ~ FI™l(z) = A=) A(z)™, with ¢ >2
Y

where (i) A(z) is analytic on the disk |z| < p with p > 1,
(#) a:=A(1)#0, b:=A(1) >0,
(1) for |z| close enough to 1, |A(2)| < A(|z]).

Then, for n — oo and m/n € [0, a/b|,




A general result for the asymptotics of coefficients

1
Consider the function ~ FI™l(z) = A=) A(z)™, with ¢ >2
Y

where (i) A(z) is analytic on the disk |z| < p with p > 1,
(#) a:=A(1)#0, b:=A(1) >0,
(1) for |z| close enough to 1, |A(2)| < A(|z]).

Then, for n — oo and m/n € [0, a/b|,

Application to the present situation.

For the first phase: a=1 = A "beta” behavior (1,{—1)
For the subsequent phases: a <1 = A geometric behavior of ratio a



Main result for the number of divisions Lj — First phase (k = 1)

The number of divisions Lq performed during the first phase
— has a mean value of linear order

qg—1n 3¢+1 1 2q
E,[L] = - o|—-). —— =ent
(] 2q / - 4q - (n q—1 entropy

— follows an asymptotic beta law of parameter (1,¢ — 1).
Its distribution satisfies when n — oo, and m/n € [0, (¢ — 1)/(2q)]

2g m o 1
P,[Li>m]=(1———— +0|— ).
q—1n ne
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Main result for the number of divisions Lj, — Subsequent phases (case k > 2)

For k > 2, the number of divisions performed during the k-th phase
— has a mean value of constant order

()

— follows an asymptotic geometric law, with ratio

For n — oo and m/n € [0,1/(k+1) - (¢* —1)/¢"]

g—1\" logn
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[Lx > m] <qk—1) + ( . >
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Main result for the number of divisions Lj, — Subsequent phases (case k > 2)

For k > 2, the number of divisions performed during the k-th phase

— has a mean value of constant order

—1 1
E’n,[[/k} - <1 + qk > +O <>a
q° —q n

— follows an asymptotic geometric law, with ratio

For n — oo and m/n € [0,1/(k+1) - (¢* —1)/¢"]

g—1\" logn
PILLJ > = 0]
[Lx > m] <qk’—1) + ( . >

0.8

4=
gk —1
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[1. Analysis on integers.



[1. Analysis on integers.

We use Dirichlet generating functions
together with a dynamical point of view
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translates as a product of power generating functions
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Remind : The Euclid algorithm (¢ = 2) on polynomials
translates as a product of power generating functions
1
1-G(zt)
We will prove that the Euclid algorithm (¢ = 2) on integers

U(2)U(t) = U(zt) - (UR) +U®) —1].

translates as a product of Dirichlet generating functions

()¢t = s+ 1) <;<I ~Gar) o (Gt G») 1](0)

This involves — the Riemann Dirichlet series ((s) = > ., a *°
— a functional operator G; (that depends on a parameter s)

CAGICEDY (nit) f(lﬂ)

m>1

The operator G, “generates” the quotients; it is closely related

to the transfer operator of the underlying dynamical system...

An instance of a “dynamical” analysis....
More involved than the previous one, but provides the same type of results.



Similarities and differences between the two analyses

Polynomials

Integers

GF Power GF's Dirichlet GF and operators
i wm | Gl =Y () (-
Basic tool G(z) = zm:Z " R s \m+t) T A\m+t
U*)+U(z) -1 _
Phase GF =G+ (I — G(rr1)s) "o (Gis + Gy)[1](0)
Singularities | z s.t. G(zF 1) =1 sst. AM(E+1)s) =1
Extraction Cauchy Formula Perron Formula

Contours

Disks

Vertical lines




Similarities and differences between the two analyses

Polynomials

Integers

GF Power GF's Dirichlet GF and operators
i dm) | Glf)(t) = > I
Basic tool G(z) = zm:Z " s S\mtt) T\m+t
U(zF)+U(z) -1 -
Phase GF =G+ (I — G(rr1)s) "o (Gis + Gy)[1](0)
Singularities | z s.t. G(zF 1) =1 sst. AM(E+1)s) =1
Extraction Cauchy Formula Perron Formula
Contours Disks Vertical lines

A2)=1;

A(s) is the dominant eigenvalue of G,

N (2) closely related to the entropy
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Results in the integer case.
NB: the integer size of the input &~ number of digits in base e

We prove the following facts about the number of divisions performed

— during the first phase:
— it is linear on average,
— it asymptotically follows a beta law;

— during subsequent phase:
— it is constant on average

— it asymptotically follows a geometric law

The same phenomena occur for the size of the partial gcd.

zzzzzzzzzzz
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— The k-th phase computes the k—th gcd,
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Probabilistic analysis of the plain /~GCD algorithm on Z.

On the input (21, x2,...,x¢),
— the algorithm computes the total ged vy := ged (21, 22, ..., /)
— with / — 1 phases.
— The k-th phase computes the k—th gcd,

— each phase performs the classical Euclid algorithm
via a sequence of Euclidean divisions

The set of inputs is Q = {z := (z1,...,7¢); z; € N}
The size of an input: d(z) := d(z22...2¢) with d(z) := |logz]
“almost additive” d(z) =~ d(z1) + ...+ d(ze)

Main costs of interest
— the number L;, of divisions during the k—th phase
i.e. on the input (zx,yr—1)
— the size Dy, of the k—th gcd
(at the beginning of the k-th phase).
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Euclid(ai,a2), [case a1 > as].
ai = mi as + as 0<as<as
as = mo as + a4 0< aq <as
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The last non zero remainder is the gcd y. Here y = a,+1.
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The combinatorial bijection induced by the Euclid Algorithm [¢ = 2]

Euclid(ai,a2), [case a1 > as].
ai = mi as + as 0<as<as
as = mo as + a4 0< aq <as
= +
Ar—1 = Mp-1Gr + Gr41 0< Ary1 < Gp
Qr = My ar41 + 0
The last non zero remainder is the gcd y. Here y = a,+1.

The Euclid Algorithm is then extended to the case when a1 < a2,
by letting Euclid(a1, as) := Euclid(az, a1)

The pair (a1, az2) of positive integers is entirely determined by
— the sequence of quotients (my,ma, ..., m,), where
— the first quotient m satisfies
my >0 [a; > as] or my > 1 [a1 < ag]
— any quotient m; for ¢ € [2..r] satisfies m; > 1
— the gcd y = @11 satisfies y > 1
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Euclid Algorithm and Continued Fractions Expansions
We use Continued Fractions Expansions and LFT's A, (z) :== 1/(m+x)
Euclid(a1,a2), [case a1 > as].

y = ged(a, az); a1 =u1yY, a2 =U2Y, a3 =U3Y
ged(ui, u2) = 1, ged(uz,uz) =1
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Euclid Algorithm and Continued Fractions Expansions

We use Continued Fractions Expansions and LFT's A, (z) :== 1/(m+x)

Euclid(a1,a2), [case a1 > as].
y = ged(a, az); a1 =u1yY, a2 =U2Y, a3 =U3Y

ged(ui, u2) = 1, ged(uz,uz) =1

u _ 1 us _ 1
wr 1 ’ Uo 1
“ Tnl—’_ 1 U2 m2+—1
my+ ——————— ms +
1
m3+71 S
4 My
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U2 us
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Euclid Algorithm and Continued Fractions Expansions

We use Continued Fractions Expansions and LFT's

h(2) == 1/(m+2)

Euclid(a1,a2),

y := ged(ar, a2);

[case a1 > as].

ay =ury,

a2 = u2Yy,

as = usy

ged(ui, u2) = 1, ged(uz,uz) =1

uz _ 1
22 _ : 7
Yy + 1
ma + I
ms3 +
1
L
My
u2
—= = himy ©hmy 0.0 A (0),
I tmy © 2 © o ,(0)
1 /
—5 = (hm, ©hmy0...0hm, ) (0)
uy

us3
U2

1
)
Uz

= 1
my + —————g——

=(hmyo0...

For LFT’s, the denominators are recovered with the derivatives

if h(z)

b
- + then

x+d’

W' (x)

det h
(cx + d)?




Proof of the alternative expression for the Dirichlet generating function (¢ = 2)

C(51)¢(52) = (1 +52) (5 (= Gayin) ™0 (G, +C))[110)

with - G,[f](8) = Y W) f o h(t) = ) <m;+t> ! (%ﬂ)

heH m>1
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The Euclid algorithm (¢ = 2) on integers
translates as a product of Dirichlet generating functions
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with T(s1,5) = (1~ Gy, 10,) 0 (G, + Gy [10)



The Euclid algorithm (¢ = 2) on integers
translates as a product of Dirichlet generating functions

C(s1)((s2) = T(s1,52) ((s1 + 82),

. 1 _
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The Euclid algorithm (¢ = 2) on integers
translates as a product of Dirichlet generating functions

C(s1) C(s2) = T(s1,82) ((s1+ s2),

with T(s1,5) = (1~ Gy, 10,) 0 (G, + Gy [10)

Then, for any £ > 2, the /-Euclid algorithm translates as the product

-1
C(s1) -+ C(s0) = ((te) H T(Sks1,tk) [t := 51+ 82+ ...+ sk, ]
k=1
Now, with s = s1 = ... = sy,

the (plain) generating function S(s) of N* has an alternative expression

£—1

S(s) = ¢(s)" = ¢(ts) [ T(s.ks)

k=1

which is an exact translation of the /-Euclid algorithm.
T is the “phase generating function”.
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Bivariate Generating functions for the ¢-Euclid Algorithm

-1
We start with: S(s) = C(s)" = ¢(Ls) H T(s,ks)
k=1
For studying the distribution of the two costs :
— Lj, (number of steps in the k-th phase)
— Dy, (size of the gcd at the beginning of the k-th phase)

we use bivariate generating functions, with an extra variable u

- T(s, ks, u) _ Z(ks,u)
Lk(s,u)—C(s)e~m, Dk(s,u)—C(S)e'Wa
1 ud(m)
T(s,t,u) = 5“(1—“Gs+t)71 0 (Gs+Gy)[1](0), Z(s,u) = Z ns

n>1
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The generating functions of the events [L; > m] and [Djy > m)|
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Towards the distributional analysis of Lj and Dj.
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Towards the distributional analysis of Lj and Dj.

The generating functions of the events [L; > m] and [Djy > m)|

LM (s) =" wLi(s,u),  D"(s) = > [u]Di(s,u)

j>m j>m

admit the alternative expressions:

1
with  (u(s) := Z — and ,+ some “nice” function,

~[m em k TIm ) m
D = (o) S B0 =) Glhplonsl0)
both of type  B(s) - Arm(s), with A (s) = AL (s)

Ap(s) = M(k+1)s) [L—case] Ai(s) = exp[l — ks] [D—case]

The asymptotics depends on the value a := Ag(1) at the pole s = 1 of B(s)
For k=1, one hasa=1- For k > 2, one has a < 1.
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The number of divisions L performed during the first phase

— has a mean value of linear order

6log2 n 1 72

— follows an asymptotic beta law of parameter (1,4 — 1).
Its distribution satisfies when n — oo, and m/n € [0, (6log 2)/7?]
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For k > 2, the number of divisions during the k-th phase

— has a mean value of constant order

Eu[Ly) = (I = Gpy1) " r](0) + O <7lz>

— follows an asymptotic quasi-geometric law, with quasi—ratio A(k + 1)
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[V. An unified point of view for the two analyses?

A dynamical point of view....
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V:0,1] — [0, 1],
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The set of the inverse branches of V' is

The underlying dynamical system in the integer case defined by the pair ([0,1],V).
J for ©#£0, V(0)=0
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It builds the continued fraction expansions

-

The operator G is the transfer operator of the dynamical system.

It involves the derivatives of the inverse branches of V'

Gulflie) = 32 (ra) 7 ()

m+x
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The underlying dynamical system in the polynomial case.
The exact ultrametric analog of the DS in the integer case.
Fq[Z] +— Z, Fy(Z) +— Q, F,((1/Z)) «+— R
Fq((1/2)): the completion of Fy[Z] for the ultrametric norm ||ul| := ¢
The integer part function |-] satisfies | f] = 0 iff || f|] <1

d(u) )

Dynamical system' (X, V) with

Xq=A{f €Fe((1/2)); IIfIl <1} and
Vi =X, Viz)= % m (x#£0),  V(0)=0.

The transfer operator G is defined with the inverse branches of V/,

Gilfle) = > |m—|1—x||5f(m}|-$>

m,|[m||>1
1
Ultrametric norm = ||m + z|| = ||m|| = G,[1] = Z .
m,||m||>1 ||m||
1 . . . _
Gl = Z T the power generating function G(z) with z = ¢ °

m,d(m)>0

Classical analysis for polynomials: a particular case of a dynamical analysis
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General conclusions.

Methodologic point of view.
— A simple (but not trivial) instance of analysis of algorithms
— Classical analysis versus dynamical analysis
— Provides precise distributional results.
— With an (unexpected) occurrence of the Beta law
— Can be extended to the analysis of the bit complexity [work in progress]

Algorithmic point of view.
— This plain strategy is proven to be efficient.
— To be compared to other strategies
— Random scalar products [Von Zur Gathen, Shparlinski],
Compute a unique gcd between two random scalar products
— Brun's algorithm : [Joint work in progress with Berthé and Lhote]



