Definitions	Computing α	The Stable Set polytope	χ -bounded classes	Erdős-Hajnal conjecture	Complexity of graph classes?

Stable sets in Graphs

Nicolas Bousquet (McGill), Marthe Bonamy (Montpellier), Pierre Charbit (LIAFA), Aurélie Lagoutte (ENS Lyon), Stéphan Thomassé (ENS Lyon), Nicolas Trotignon (ENS Lyon)

February 3, 2015

Key definitions

A **stable set** in a graph G = (V, E) is a set of pairwise non adjacent vertices.

Key definitions

A **stable set** in a graph G = (V, E) is a set of pairwise non adjacent vertices. Maximum size is $\alpha(G)$.

Definitions Computing α The Stable Set polytope χ-bounded classes Erdős-Hajnal conjecture Complexity of graph classes? •0 00 00 00 000 000 000

Key definitions

A **stable set** in a graph G = (V, E) is a set of pairwise non adjacent vertices. Maximum size is $\alpha(G)$.

A **clique** is a set of pairwise adjacent vertices.

$\begin{array}{c|c} \textbf{Definitions} \\ \bullet \textbf{O} \\ \bullet \textbf{O} \\ \end{array} \begin{array}{c} \text{Computing } \alpha \\ \circ \textbf{O} \\ \end{array} \begin{array}{c} \text{The Stable Set polytope} \\ \gamma \text{-bounded classes} \\ \circ \textbf{O} \\ \circ \textbf{O} \\ \end{array} \begin{array}{c} \text{Erdős-Hajnal conjecture} \\ \circ \textbf{O} \\ \circ \textbf{O} \\ \end{array} \begin{array}{c} \text{Complexity of graph classes} \\ \circ \textbf{O} \\ \end{array} \right)$

Key definitions

A stable set in a graph G = (V, E) is a set of pairwise non adjacent vertices. Maximum size is $\alpha(G)$. A clique is a set of pairwise adjacent vertices. Maximum size is $\omega(G)$.

Key definitions

A **stable set** in a graph G = (V, E) is a set of pairwise non adjacent vertices. Maximum size is $\alpha(G)$.

A **clique** is a set of pairwise adjacent vertices. Maximum size is $\omega(G)$.

The **chromatic number** $\chi(G)$ is the minimum number of stable sets partitioning V.

$\begin{array}{c|c} \textbf{Definitions} \\ \bullet \textbf{O} \end{array} \begin{array}{c} \textbf{Computing } \alpha \\ \bullet \textbf{O} \end{array} \begin{array}{c} \textbf{The Stable Set polytope} \\ \bullet \textbf{O} \end{array} \begin{array}{c} \chi \text{-bounded classes} \\ \bullet \textbf{O} \end{array} \begin{array}{c} \textbf{Erdős-Hajnal conjecture} \\ \bullet \textbf{O} \end{array} \begin{array}{c} \textbf{Complexity of graph classes?} \\ \bullet \textbf{O} \end{array}$

Key definitions

A **stable set** in a graph G = (V, E) is a set of pairwise non adjacent vertices. Maximum size is $\alpha(G)$.

A **clique** is a set of pairwise adjacent vertices. Maximum size is $\omega(G)$.

The **chromatic number** $\chi(G)$ is the minimum number of stable sets partitioning V.

• A clique intersects a stable set on at most one vertex.

Key definitions

A **stable set** in a graph G = (V, E) is a set of pairwise non adjacent vertices. Maximum size is $\alpha(G)$.

A **clique** is a set of pairwise adjacent vertices. Maximum size is $\omega(G)$.

The **chromatic number** $\chi(G)$ is the minimum number of stable sets partitioning V.

- A clique intersects a stable set on at most one vertex.
- $\omega(G) \leq \chi(G)$. (Gap may be arbitrary even when $\omega = 2$.)

 $\begin{array}{c|c} \textbf{Definitions} \\ \bullet \textbf{O} \end{array} \begin{array}{c} \textbf{Computing } \alpha \\ \bullet \textbf{O} \end{array} \begin{array}{c} \textbf{The Stable Set polytope} \\ \bullet \textbf{O} \end{array} \begin{array}{c} \chi \text{-bounded classes} \\ \bullet \textbf{O} \end{array} \begin{array}{c} \textbf{Erdős-Hajnal conjecture} \\ \bullet \textbf{O} \end{array} \begin{array}{c} \textbf{Complexity of graph classes?} \\ \bullet \textbf{O} \end{array}$

Key definitions

.

A **stable set** in a graph G = (V, E) is a set of pairwise non adjacent vertices. Maximum size is $\alpha(G)$.

A **clique** is a set of pairwise adjacent vertices. Maximum size is $\omega(G)$.

The **chromatic number** $\chi(G)$ is the minimum number of stable sets partitioning V.

- A clique intersects a stable set on at most one vertex.
- $\omega(G) \leq \chi(G)$. (Gap may be arbitrary even when $\omega = 2$.)
- G is **perfect** when all induced subgraphs H satisfy

$$\omega(H) = \chi(H)$$

A class of graphs G is closed under induced subgraphs.

- A class of graphs \mathcal{G} is closed under induced subgraphs.
 - Triangle-free graphs.

- A class of graphs \mathcal{G} is closed under induced subgraphs.
 - Triangle-free graphs.
 - *H*-free graphs where *H* is some fixed graph.

- A class of graphs G is closed under induced subgraphs.
 - Triangle-free graphs.
 - *H*-free graphs where *H* is some fixed graph.
 - Bipartite graphs (all induced odd cycles are forbidden).

- A class of graphs \mathcal{G} is closed under induced subgraphs.
 - Triangle-free graphs.
 - H-free graphs where H is some fixed graph.
 - Bipartite graphs (all induced odd cycles are forbidden).
 - Berge graphs (all induced odd cycles with length at least 5 and their complements are forbidden).

- A class of graphs \mathcal{G} is closed under induced subgraphs.
 - Triangle-free graphs.
 - *H*-free graphs where *H* is some fixed graph.
 - Bipartite graphs (all induced odd cycles are forbidden).
 - Berge graphs (all induced odd cycles with length at least 5 and their complements are forbidden).
 - Line graphs, comparability graphs, etc.

- A class of graphs \mathcal{G} is closed under induced subgraphs.
 - Triangle-free graphs.
 - *H*-free graphs where *H* is some fixed graph.
 - Bipartite graphs (all induced odd cycles are forbidden).
 - Berge graphs (all induced odd cycles with length at least 5 and their complements are forbidden).
 - Line graphs, comparability graphs, etc.
 - Your favorite *strict* class, i.e. not all graphs.

- A class of graphs \mathcal{G} is closed under induced subgraphs.
 - Triangle-free graphs.
 - *H*-free graphs where *H* is some fixed graph.
 - Bipartite graphs (all induced odd cycles are forbidden).
 - Berge graphs (all induced odd cycles with length at least 5 and their complements are forbidden).
 - Line graphs, comparability graphs, etc.
 - Your favorite *strict* class, i.e. not all graphs.

Question

Stable sets should behave well (or better...) in strict classes. How to express "good behaviour"?

Definitions	Computing α	The Stable Set polytope	χ -bounded classes	Erdős-Hajnal conjecture	Complexity of graph classes?

Computing α

• Bipartite graphs. (Complement of minimum vertex cover.)

- Bipartite graphs. (Complement of minimum vertex cover.)
- Comparability graphs. (Maximum antichain.)

- Bipartite graphs. (Complement of minimum vertex cover.)
- Comparability graphs. (Maximum antichain.)
- Line graphs of bipartite graphs. (Bipartite matching.)

- Bipartite graphs. (Complement of minimum vertex cover.)
- Comparability graphs. (Maximum antichain.)
- Line graphs of bipartite graphs. (Bipartite matching.)
- Berge graphs. (See later)

- Bipartite graphs. (Complement of minimum vertex cover.)
- Comparability graphs. (Maximum antichain.)
- Line graphs of bipartite graphs. (Bipartite matching.)
- Berge graphs. (See later)
- Line graphs. (Edmonds)

Forbidding a single graph

Let G with m edges, and G^{**} be the graph obtained when subdividing every edge of G twice. Then

Definitions $\begin{array}{c} \text{Computing } \alpha \\ 0 \end{array}$ The Stable Set polytope χ -bounded classes $\begin{array}{c} \text{Erdős-Hajnal conjecture} \\ 0 \end{array}$ Complexity of graph classes?

Forbidding a single graph

Let G with m edges, and G^{**} be the graph obtained when subdividing every edge of G twice. Then

 $\alpha(G^{**}) = \alpha(G) + m$

Definitions Computing α The Stable Set polytope χ -bounded classes Erdős-Hajnal conjecture Complexity of graph classes? $\circ \circ$ $\circ \circ$ $\circ \circ$ $\circ \circ$

Forbidding a single graph

Let G with m edges, and G^{**} be the graph obtained when subdividing every edge of G twice. Then

$$\alpha(G^{**}) = \alpha(G) + m$$

Hence α is hard to compute even in very sparse graphs.

Definitions Computing α The Stable Set polytope χ -bounded classes Erdős-Hajnal conjecture Complexity of graph classes? $\circ \circ$ $\circ \circ$ $\circ \circ$ $\circ \circ$ $\circ \circ$

Forbidding a single graph

Let G with m edges, and G^{**} be the graph obtained when subdividing every edge of G twice. Then

$$\alpha(G^{**}) = \alpha(G) + m$$

Hence α is hard to compute even in very sparse graphs. Construction involves long induced paths.

Definitions Computing α The Stable Set polytope χ -bounded classes Erdős-Hajnal conjecture Complexity of graph classes? $\circ \circ$ $\circ \circ$ $\circ \circ$ $\circ \circ$

Forbidding a single graph

Let G with m edges, and G^{**} be the graph obtained when subdividing every edge of G twice. Then

$$\alpha(G^{**}) = \alpha(G) + m$$

Hence α is hard to compute even in very sparse graphs. Construction involves long induced paths.

Open Problem:

Compute α in polytime when forbidding a fixed induced path P_k .

Definitions Computing α The Stable Set polytope χ -bounded classes Erdős-Hajnal conjecture Complexity of graph classes? $\circ \circ$ $\circ \circ$ $\circ \circ$ $\circ \circ$

Forbidding a single graph

Let G with m edges, and G^{**} be the graph obtained when subdividing every edge of G twice. Then

$$\alpha(G^{**}) = \alpha(G) + m$$

Hence α is hard to compute even in very sparse graphs. Construction involves long induced paths.

Open Problem:

Compute α in polytime when forbidding a fixed induced path P_k .

Theorem (Lokshtanov, Vatshelle and Villanger, SODA 2014)

There is a polytime algorithm for P5-free graphs.

Definitions Computing α The Stable Set polytope χ -bounded classes Erdős-Hajnal conjecture Complexity of graph classes?

Forbidding a single graph

Let G with m edges, and G^{**} be the graph obtained when subdividing every edge of G twice. Then

$$\alpha(G^{**}) = \alpha(G) + m$$

Hence α is hard to compute even in very sparse graphs. Construction involves long induced paths.

Open Problem:

Compute α in polytime when forbidding a fixed induced path P_k .

Theorem (Lokshtanov, Vatshelle and Villanger, SODA 2014)

There is a polytime algorithm for P5-free graphs.

Uses **potential maximal cliques** (Bouchitté and Todinca).

Definitions	Computing α	The Stable Set polytope	χ -bounded classes	Erdős-Hajnal conjecture	Complexity of graph classes?

Stable Set polytope

Definitions Computing α oo **The Stable Set polytope** χ -bounded classes oo oo complexity of graph classes?

The Stable Set polytope

To every stable set S of a graph G = (V, E), we associate its characteristic (0, 1) vector x_S in $\mathbb{R}^{|V|}$.

Definitions Computing α oo **The Stable Set polytope** χ -bounded classes oo oo complexity of graph classes?

The Stable Set polytope

To every stable set *S* of a graph G = (V, E), we associate its characteristic (0, 1) vector x_S in $\mathbb{R}^{|V|}$. The convex hull of all such x_S is the **stable set polytope** STAB(*G*).

$\begin{array}{c} \text{Definitions} \\ \text{oo} \end{array} \\ \begin{array}{c} \text{Omputing } \alpha \\ \text{oo} \end{array} \\ \begin{array}{c} \text{The Stable Set polytope} \\ \text{oo} \end{array} \\ \begin{array}{c} \chi \text{-bounded classes} \\ \text{ooo} \end{array} \\ \begin{array}{c} \text{Erdős-Hajnal conjecture} \\ \text{ooo} \end{array} \\ \begin{array}{c} \text{Complexity of graph classes?} \\ \text{ooo} \end{array} \\ \end{array}$

The Stable Set polytope

To every stable set *S* of a graph G = (V, E), we associate its characteristic (0, 1) vector x_S in $\mathbb{R}^{|V|}$. The convex hull of all such x_S is the **stable set polytope** STAB(*G*).

For every clique K, the inequality $\sum_{v_i \in K} v_i \leq 1$ is a valid inequality for STAB(*G*), called **clique constraints**.

$\begin{array}{c} \text{Definitions} \\ \text{oo} \end{array} \\ \begin{array}{c} \text{Computing } \alpha \\ \text{oo} \end{array} \\ \begin{array}{c} \text{The Stable Set polytope} \\ \text{oo} \end{array} \\ \begin{array}{c} \chi \text{-bounded classes} \\ \text{ooo} \end{array} \\ \begin{array}{c} \text{Erdős-Hajnal conjecture} \\ \text{ooo} \end{array} \\ \begin{array}{c} \text{Complexity of graph classes?} \\ \text{ooo} \end{array} \\ \end{array}$

The Stable Set polytope

To every stable set *S* of a graph G = (V, E), we associate its characteristic (0, 1) vector x_S in $\mathbb{R}^{|V|}$. The convex hull of all such x_S is the **stable set polytope** STAB(*G*). For every clique *K*, the inequality $\sum_{v_i \in K} v_i \leq 1$ is a valid inequality

for STAB(G), called **clique constraints**.

The following are equivalent
$\begin{array}{c} \text{Definitions} \\ \text{oo} \end{array} \\ \begin{array}{c} \text{Computing } \alpha \\ \text{oo} \end{array} \\ \begin{array}{c} \text{The Stable Set polytope} \\ \text{oo} \end{array} \\ \begin{array}{c} \chi \text{-bounded classes} \\ \text{ooo} \end{array} \\ \begin{array}{c} \text{Erdős-Hajnal conjecture} \\ \text{ooo} \end{array} \\ \begin{array}{c} \text{Complexity of graph classes?} \\ \text{ooo} \end{array} \\ \end{array}$

The Stable Set polytope

To every stable set *S* of a graph G = (V, E), we associate its characteristic (0, 1) vector x_S in $\mathbb{R}^{|V|}$. The convex hull of all such x_S is the **stable set polytope** STAB(*G*). For every clique *K*, the inequality $\sum_{v_i \in K} v_i \leq 1$ is a valid inequality

for STAB(G), called **clique constraints**.

The following are equivalent

• G is perfect.

Definitions
οComputing α
οThe Stable Set polytope
•Oχ-bounded classes
οErdős-Hajnal conjecture
οοComplexity of graph classes?

The Stable Set polytope

To every stable set *S* of a graph G = (V, E), we associate its characteristic (0, 1) vector x_S in $\mathbb{R}^{|V|}$. The convex hull of all such x_S is the **stable set polytope** STAB(*G*). For every clique *K*, the inequality $\sum_{v_i \in K} v_i \leq 1$ is a valid inequality for STAB(*G*), called **clique constraints**.

The following are equivalent

- G is perfect.
- *STAB*(*G*) is given by clique and nonnegativity constraints (Fulkerson, Chvatal).

Definitions of the Stable Set polytope to the st

The Stable Set polytope

To every stable set *S* of a graph G = (V, E), we associate its characteristic (0, 1) vector x_S in $\mathbb{R}^{|V|}$. The convex hull of all such x_S is the **stable set polytope** STAB(*G*). For every clique *K*, the inequality $\sum_{v_i \in K} v_i \leq 1$ is a valid inequality for STAB(*G*), called **clique constraints**.

The following are equivalent

- G is perfect.
- *STAB*(*G*) is given by clique and nonnegativity constraints (Fulkerson, Chvatal).
- G is Berge (Chudnovsky, Robertson, Seymour, Thomas).

 $\begin{array}{ccc} \text{Definitions} & \text{Computing } \alpha \\ \text{oo} & \text{oo} & \begin{array}{c} \text{The Stable Set polytope} \\ \text{oo} & \text{oo} & \begin{array}{c} \chi \text{-bounded classes} \\ \text{ooo} & \begin{array}{c} \text{Erdős-Hajnal conjecture} \\ \text{ooo} & \begin{array}{c} \text{Complexity of graph classes} \\ \text{ooo} & \begin{array}{c} \end{array} \end{array}$

Extended formulations

Theorem (Lovász)

When G is perfect, STAB(G) is a semidefinite domain. Hence $\alpha(G)$ can be computed using SDP.

Extended formulations

Theorem (Lovász)

When G is perfect, STAB(G) is a semidefinite domain. Hence $\alpha(G)$ can be computed using SDP.

Open Problem:

Combinatorial poly(*n*) algorithm to compute α in perfect graphs.

 $\begin{array}{ccc} \text{Definitions} & \text{Computing } \alpha \\ \text{oo} & \text{oo} \end{array} & \begin{array}{c} \text{The Stable Set polytope} \\ \chi \text{-bounded classes} \\ \text{ooo} \end{array} & \begin{array}{c} \text{Erdős-Hajnal conjecture} & \text{Complexity of graph classes?} \\ \text{ooo} \end{array} \\ \end{array}$

Extended formulations

Theorem (Lovász)

When G is perfect, STAB(G) is a semidefinite domain. Hence $\alpha(G)$ can be computed using SDP.

Open Problem:

Combinatorial poly(*n*) algorithm to compute α in perfect graphs.

When G is perfect, describe STAB(G) with few constraints?

Extended formulations

Theorem (Lovász)

When G is perfect, STAB(G) is a semidefinite domain. Hence $\alpha(G)$ can be computed using SDP.

Open Problem:

Combinatorial poly(*n*) algorithm to compute α in perfect graphs.

When G is perfect, describe STAB(G) with few constraints?

Open Problem:

When G is perfect, is STAB(G) the projection of a polytope with poly(n) facets? **extended formulations**

 $\begin{array}{c} \mbox{Definitions} \\ \mbox{oo} \end{array} & \begin{array}{c} \mbox{Computing } \alpha \\ \mbox{oo} \end{array} & \begin{array}{c} \mbox{The Stable Set polytope} \\ \mbox{oo} \end{array} & \begin{array}{c} \chi \mbox{-bounded classes} \\ \mbox{oo} \end{array} & \begin{array}{c} \mbox{Erdős-Hajnal conjecture} \\ \mbox{conjecture} \end{array} & \begin{array}{c} \mbox{Complexity of graph classes} \\ \mbox{oo} \end{array} & \begin{array}{c} \mbox{oo} \end{array} & \begin{array}{c} \mbox{oo} \end{array} & \begin{array}{c} \mbox{Complexity of graph classes} \\ \mbox{oo} \end{array} & \begin{array}{c} \mbox{conjecture} \end{array} & \begin{array}{c} \mbox{Complexity of graph classes} \\ \mbox{oo} \end{array} & \begin{array}{c} \mbox{oo} \end{array} & \begin{array}{c} \mbox{conjecture} \end{array} & \begin{array}{c} \mbox{c$

Extended formulations

Theorem (Lovász)

When G is perfect, STAB(G) is a semidefinite domain. Hence $\alpha(G)$ can be computed using SDP.

Open Problem:

Combinatorial poly(*n*) algorithm to compute α in perfect graphs.

When G is perfect, describe STAB(G) with few constraints?

Open Problem:

When G is perfect, is STAB(G) the projection of a polytope with poly(n) facets? **extended formulations**

Do extended formulations always explain easiness of computing α ?

 $\begin{array}{c} \mbox{Definitions} \\ \mbox{oo} \end{array} & \begin{array}{c} \mbox{Computing } \alpha \\ \mbox{oo} \end{array} & \begin{array}{c} \mbox{The Stable Set polytope} \\ \mbox{oo} \end{array} & \begin{array}{c} \chi \mbox{-bounded classes} \\ \mbox{oo} \end{array} & \begin{array}{c} \mbox{Erdős-Hajnal conjecture} \\ \mbox{conjecture} \end{array} & \begin{array}{c} \mbox{Complexity of graph classes} \\ \mbox{oo} \end{array} & \begin{array}{c} \mbox{oo} \end{array} & \begin{array}{c} \mbox{oo} \end{array} & \begin{array}{c} \mbox{Complexity of graph classes} \\ \mbox{oo} \end{array} & \begin{array}{c} \mbox{conjecture} \end{array} & \begin{array}{c} \mbox{Complexity of graph classes} \\ \mbox{oo} \end{array} & \begin{array}{c} \mbox{oo} \end{array} & \begin{array}{c} \mbox{conjecture} \end{array} & \begin{array}{c} \mbox{c$

Extended formulations

Theorem (Lovász)

When G is perfect, STAB(G) is a semidefinite domain. Hence $\alpha(G)$ can be computed using SDP.

Open Problem:

Combinatorial poly(*n*) algorithm to compute α in perfect graphs.

When G is perfect, describe STAB(G) with few constraints?

Open Problem:

When G is perfect, is STAB(G) the projection of a polytope with poly(n) facets? **extended formulations**

Do extended formulations always explain easiness of computing α ?

Theorem (Rothvoss, STOC 2014)

STAB of line graphs does not have extended formulations.

Definitions	Computing α	The Stable Set polytope	χ -bounded classes	Erdős-Hajnal conjecture	Complexity of graph classes?

χ -bounded classes

 $\begin{array}{c} \mbox{Definitions}\\ \mbox{oo} \end{array} & \begin{array}{c} \mbox{Computing } \alpha \\ \mbox{oo} \end{array} & \begin{array}{c} \mbox{The Stable Set polytop} \\ \mbox{oo} \end{array} & \begin{array}{c} \mbox{\chi-bounded classes} \\ \mbox{erd} \mbox{s-Hajnal conjecture} \end{array} & \begin{array}{c} \mbox{Complexity of graph classes} \\ \mbox{oo} \mbox{oo} \end{array} & \begin{array}{c} \mbox{Complexity of graph classes} \\ \mbox{oo} \mbox{oo} \end{array} & \begin{array}{c} \mbox{complexity of graph classes} \\ \mbox{oo} \mbox{oo} \mbox{oo} \end{array} & \begin{array}{c} \mbox{Complexity of graph classes} \\ \mbox{oo} \mbox{oo} \mbox{oo} \mbox{oo} \mbox{oo} \end{array} & \begin{array}{c} \mbox{Complexity of graph classes} \\ \mbox{oo} \m$

Gyárfás' Conjectures

A graph class \mathcal{G} is χ -**bounded** if there is a function f such that every $G \in \mathcal{G}$ satisfies $\chi(G) \leq f(\omega(G))$.

 $\begin{array}{c|c} \text{Definitions} \\ \text{oo} \\ \end{array} & \begin{array}{c} \text{Computing } \alpha \\ \text{oo} \\ \end{array} & \begin{array}{c} \text{The Stable Set polytope} \\ \text{oo} \\ \end{array} & \begin{array}{c} \chi \text{-bounded classes} \\ \text{evo} \\ \end{array} & \begin{array}{c} \text{Erdős-Hajnal conjecture} \\ \text{ooo} \\ \end{array} & \begin{array}{c} \text{Complexity of graph classes} \\ \text{ooo} \\ \end{array} \\ \end{array}$

Gyárfás' Conjectures

A graph class \mathcal{G} is χ -**bounded** if there is a function f such that every $G \in \mathcal{G}$ satisfies $\chi(G) \leq f(\omega(G))$.

Since there are triangle-free graphs with high chromatic number, the class of all graphs is not χ -bounded.

Gyárfás' Conjectures

A graph class \mathcal{G} is χ -**bounded** if there is a function f such that every $G \in \mathcal{G}$ satisfies $\chi(G) \leq f(\omega(G))$. Since there are triangle-free graphs with high chromatic number, the class of all graphs is not χ -bounded.

Theorem (Gyárfás)

 P_k -free graphs are χ -bounded.

 $\begin{array}{cccc} \text{Definitions} & \text{Computing } \alpha & \text{The Stable Set polytope} & \textbf{χ-bounded classes} \\ \text{oo} & \text{oo} & \textbf{$\circ\circ$} & \text{oo} & \text{oo} \end{array} \end{array} \\ \begin{array}{c} \text{Erdős-Hajnal conjecture} & \text{Complexity of graph classes?} \\ \text{ooo} & \text{ooo} & \text{ooo} \end{array}$

Gyárfás' Conjectures

A graph class \mathcal{G} is χ -**bounded** if there is a function f such that every $G \in \mathcal{G}$ satisfies $\chi(G) \leq f(\omega(G))$. Since there are triangle-free graphs with high chromatic number, the class of all graphs is not χ -bounded.

Theorem (Gyárfás)

 P_k -free graphs are χ -bounded.

Open problems: The following classes are χ -bounded:

Gyárfás' Conjectures

A graph class \mathcal{G} is χ -**bounded** if there is a function f such that every $G \in \mathcal{G}$ satisfies $\chi(G) \leq f(\omega(G))$. Since there are triangle-free graphs with high chromatic number, the class of all graphs is not χ -bounded.

Theorem (Gyárfás)

 P_k -free graphs are χ -bounded.

Open problems: The following classes are χ -bounded:

• Graphs not inducing a fixed tree T.

Gyárfás' Conjectures

A graph class \mathcal{G} is χ -**bounded** if there is a function f such that every $G \in \mathcal{G}$ satisfies $\chi(G) \leq f(\omega(G))$. Since there are triangle-free graphs with high chromatic number, the class of all graphs is not χ -bounded.

Theorem (Gyárfás)

 P_k -free graphs are χ -bounded.

Open problems: The following classes are χ -bounded:

- Graphs not inducing a fixed tree T.
- Graphs not inducing cycles of length at least k.

Gyárfás' Conjectures

A graph class \mathcal{G} is χ -**bounded** if there is a function f such that every $G \in \mathcal{G}$ satisfies $\chi(G) \leq f(\omega(G))$. Since there are triangle-free graphs with high chromatic number, the class of all graphs is not χ -bounded.

Theorem (Gyárfás)

 P_k -free graphs are χ -bounded.

Open problems: The following classes are χ -bounded:

- Graphs not inducing a fixed tree T.
- Graphs not inducing cycles of length at least k.
- Graphs not inducing odd cycles of length at least 5.

Gyárfás' Conjectures

A graph class \mathcal{G} is χ -**bounded** if there is a function f such that every $G \in \mathcal{G}$ satisfies $\chi(G) \leq f(\omega(G))$. Since there are triangle-free graphs with high chromatic number, the class of all graphs is not χ -bounded.

Theorem (Gyárfás)

 P_k -free graphs are χ -bounded.

Open problems: The following classes are χ -bounded:

- Graphs not inducing a fixed tree T.
- Graphs not inducing cycles of length at least k.
- Graphs not inducing odd cycles of length at least 5.

Theorem (Scott and Seymour 2014)

Graphs not inducing odd cycles of length at least 5 are χ -bounded.

$\begin{array}{c} \mbox{Definitions}\\ \mbox{oo} \end{array} & \begin{array}{c} \mbox{Omputing } \alpha \\ \mbox{oo} \end{array} & \begin{array}{c} \mbox{The Stable Set polytop} \\ \mbox{oo} \end{array} & \begin{array}{c} \mbox{\chi-bounded classes} \\ \mbox{oo} \end{array} & \begin{array}{c} \mbox{Erdős-Hajnal conjecture} \\ \mbox{oon} \end{array} & \begin{array}{c} \mbox{Computing } \alpha \\ \mbox{omputing } \alpha \\ \mbox{oon} \end{array} & \begin{array}{c} \mbox{Computing } \alpha \\ \mbox{oon} \end{array} & \begin{array}{c} \mbox{comput} \alpha \\ \mbox{oon} \end{array} & \begin{array}{c} \mbox{comput} \alpha \end{array} & \begin{array}{c} \mbox{comput} \alpha \\ \mbox{comput} \alpha \end{array} & \begin{array}{c} \$

More on χ -boundedness

The hard case for χ -boundedness is generally to show that triangle-free graphs in the class have bounded χ . This motivated:

 $\begin{array}{ccc} \text{Definitions} & \text{Computing } \alpha \\ \text{oo} & \text{oo} \end{array} & \begin{array}{ccc} \text{The Stable Set polytope} & \pmb{\chi}\text{-bounded classes} \\ \text{oo} & \text{oo} \end{array} & \begin{array}{ccc} \text{Erdős-Hajnal conjecture} & \text{Complexity of graph classes?} \\ \text{ooo} \end{array} \\ \end{array}$

More on χ -boundedness

The hard case for χ -boundedness is generally to show that triangle-free graphs in the class have bounded χ . This motivated:

Conjecture (Trotignon and T.)

Every graph with huge chromatic number has a large clique, or an induced triangle-free graph with large chromatic number.

 $\begin{array}{ccc} \text{Definitions} & \text{Computing } \alpha \\ \text{oo} & \text{oo} \end{array} & \begin{array}{ccc} \text{The Stable Set polytope} & \pmb{\chi}\text{-bounded classes} \\ \text{oo} & \text{oo} \end{array} & \begin{array}{ccc} \text{Erdős-Hajnal conjecture} & \text{Complexity of graph classes?} \\ \text{ooo} \end{array} \\ \end{array}$

More on χ -boundedness

The hard case for χ -boundedness is generally to show that triangle-free graphs in the class have bounded χ . This motivated:

Conjecture (Trotignon and T.)

Every graph with huge chromatic number has a large clique, or an induced triangle-free graph with large chromatic number.

Remark 1. The same statement without "induced" is a beautiful proof of Rődl.

 $\begin{array}{cccc} \text{Definitions} & \text{Computing } \alpha & \text{The Stable Set polytope} & \textbf{χ-bounded classes} \\ \text{oo} & \text{oo} & \text{oo} & \text{oo} \end{array} \end{array} \\ \begin{array}{cccc} \text{Erdős-Hajnal conjecture} & \text{Complexity of graph classes?} \\ \text{ooo} & \text{ooo} & \text{ooo} \end{array}$

More on χ -boundedness

The hard case for χ -boundedness is generally to show that triangle-free graphs in the class have bounded χ . This motivated:

Conjecture (Trotignon and T.)

Every graph with huge chromatic number has a large clique, or an induced triangle-free graph with large chromatic number.

Remark 1. The same statement without "induced" is a beautiful proof of Rődl.

Remark 2. A (dishonest!) reformulation of Scott and Seymour is: Every graph with huge chromatic number has a large clique, or an induced triangle-free graph with chromatic number at least 3. $\begin{array}{ccc} \text{Definitions} & \text{Computing } \alpha \\ \text{oo} & \text{oo} \end{array} & \begin{array}{ccc} \text{The Stable Set polytope} & \pmb{\chi}\text{-bounded classes} \\ \text{oo} & \text{oo} \end{array} & \begin{array}{ccc} \text{Erdős-Hajnal conjecture} & \text{Complexity of graph classes?} \\ \text{ooo} \end{array} \\ \end{array}$

More on χ -boundedness

The hard case for χ -boundedness is generally to show that triangle-free graphs in the class have bounded χ . This motivated:

Conjecture (Trotignon and T.)

Every graph with huge chromatic number has a large clique, or an induced triangle-free graph with large chromatic number.

Remark 1. The same statement without "induced" is a beautiful proof of Rődl.

Remark 2. A (dishonest!) reformulation of Scott and Seymour is: Every graph with huge chromatic number has a large clique, or an induced triangle-free graph with chromatic number at least 3.

Wanted

Every graph with large chromatic number has a "rather complex" induced subgraph.

Stable set complex

Kalai and Meshulam proposed the following (rather complex) measure of "rather complex":

 $\begin{array}{c} \mbox{Definitions}\\ \mbox{oo} \end{array} & \begin{array}{c} \mbox{Computing } \alpha \\ \mbox{oo} \end{array} & \begin{array}{c} \mbox{The Stable Set polytop} \\ \mbox{oo} \end{array} & \begin{array}{c} \mbox{X-bounded classes} \\ \mbox{oo} \end{array} & \begin{array}{c} \mbox{Erdős-Hajnal conjecture} \\ \mbox{oo} \end{array} & \begin{array}{c} \mbox{Computing on graph classes} \\ \mbox{oo} \end{array} & \begin{array}{c} \mbox{Computing on graph classes} \\ \mbox{oo} \end{array} & \begin{array}{c} \mbox{Computing on graph classes} \\ \mbox{oo} \end{array} & \begin{array}{c} \mbox{Computing on graph classes} \\ \mbox{Omputing on graph classes} \end{array} & \begin{array}{c} \mbox{Computing on graph classes} \\ \mbox{Omputing on graph classes} \end{array} & \begin{array}{c} \mbox{Computing on graph classes} \\ \mbox{Omputing on graph classes} \end{array} & \begin{array}{c} \mbox{Computing on graph classes} \end{array} & \begin{array}{c} \mbox{Computence} \end{array} & \begin{array}{c} \mbox{Computence}$

Stable set complex

Kalai and Meshulam proposed the following (rather complex) measure of "rather complex": The sum bn(G) of the Betti numbers of the stable set complex of G.

 $\begin{array}{cccc} \text{Definitions} & \text{Computing } \alpha & \text{The Stable Set polytop} & \textbf{χ-bounded classes} \\ \text{oo} & \text{oo} & \text{oo} & \text{oo} & \text{oo} \end{array} \end{array} \\ \begin{array}{c} \text{Erdős-Hajnal conjecture} & \text{Complexity of graph classes?} \\ \text{ooo} & \text{oo} & \text{oo} & \text{oo} \end{array}$

Stable set complex

Kalai and Meshulam proposed the following (rather complex) measure of "rather complex": The sum bn(G) of the Betti numbers of the stable set complex of G.

Conjecture (Kalai and Meshulam)

Every graph with huge chromatic number has an induced subgraph H with large bn(H).

 $\begin{array}{cccc} \text{Definitions} & \text{Computing } \alpha & \text{The Stable Set polytop} & \textbf{χ-bounded classes} \\ \text{oo} & \text{oo} & \text{oo} & \text{oo} & \text{oo} \end{array} \end{array} \\ \begin{array}{c} \text{Erdős-Hajnal conjecture} & \text{Complexity of graph classes?} \\ \text{ooo} & \text{oo} & \text{oo} & \text{oo} \end{array}$

Stable set complex

Kalai and Meshulam proposed the following (rather complex) measure of "rather complex": The sum bn(G) of the Betti numbers of the stable set complex of G.

Conjecture (Kalai and Meshulam)

Every graph with huge chromatic number has an induced subgraph H with large bn(H).

Even $bn(G) \ge 2$ was open, but implied by the following:

Stable set complex

Kalai and Meshulam proposed the following (rather complex) measure of "rather complex": The sum bn(G) of the Betti numbers of the stable set complex of G.

Conjecture (Kalai and Meshulam)

Every graph with huge chromatic number has an induced subgraph H with large bn(H).

Even $bn(G) \ge 2$ was open, but implied by the following:

Theorem (Bonamy, Charbit T., 2014)

Every graph with large chromatic number has an induced cycle with length 0 mod 3.

Stable set complex

Kalai and Meshulam proposed the following (rather complex) measure of "rather complex": The sum bn(G) of the Betti numbers of the stable set complex of G.

Conjecture (Kalai and Meshulam)

Every graph with huge chromatic number has an induced subgraph H with large bn(H).

Even $bn(G) \ge 2$ was open, but implied by the following:

Theorem (Bonamy, Charbit T., 2014)

Every graph with large chromatic number has an induced cycle with length 0 mod 3.

Kalai and Meshulam conjecture that if G has no induced 0 mod 3 cycle, the number of odd stable sets and the number of even stable sets differ by at most 1.

Definitions	Computing α	The Stable Set polytope	χ -bounded classes	Erdős-Hajnal conjecture	Complexity of graph	classes?

Erdős-Hajnal conjecture

Erdős-Hajnal conjecture

In strict classes, cliques or stable sets should be large.

 $\begin{array}{cccc} \text{Definitions} & \text{Computing } \alpha & \text{The Stable Set polytope} & \chi \text{-bounded classes} & \textbf{Erdős-Hajnal conjecture} & \text{Complexity of graph classes?} \\ \text{oo} & \text{oo} & \text{oo} & \text{oo} & \textbf{oo} \end{array}$

Erdős-Hajnal conjecture

In strict classes, cliques or stable sets should be large.

Typical behavior

In random graphs G(n, 1/2), both ω and α have size $O(\log n)$.

$\begin{array}{cccc} \text{Definitions} & \text{Computing } \alpha & \text{The Stable Set polytope} & \chi \text{-bounded classes} & \textbf{Erdős-Hajnal conjecture} & \text{Complexity of graph classes?} \\ \text{oo} & \text{oo} & \text{oo} & \bullet \text{oo} \end{array}$

Erdős-Hajnal conjecture

In strict classes, cliques or stable sets should be large.

Typical behavior

In random graphs G(n, 1/2), both ω and α have size $O(\log n)$.

EH-conjecture: For every strict class \mathcal{G} , there exists ε such that every graph $G \in \mathcal{G}$ has a stable set or a clique of size n^{ε} .

$\begin{array}{cccc} \text{Definitions} & \text{Computing } \alpha & \text{The Stable Set polytope} & \chi \text{-bounded classes} & \textbf{Erdős-Hajnal conjecture} & \text{Complexity of graph classes?} \\ \text{oo} & \text{oo} & \text{oo} & \bullet \text{oo} \end{array}$

Erdős-Hajnal conjecture

In strict classes, cliques or stable sets should be large.

Typical behavior

In random graphs G(n, 1/2), both ω and α have size $O(\log n)$.

EH-conjecture: For every strict class \mathcal{G} , there exists ε such that every graph $G \in \mathcal{G}$ has a stable set or a clique of size n^{ε} . True for:

$\begin{array}{cccc} \text{Definitions} & \text{Computing } \alpha & \text{The Stable Set polytope} & \chi \text{-bounded classes} & \textbf{Erdős-Hajnal conjecture} & \text{Complexity of graph classes?} \\ \text{oo} & \text{oo} & \text{ooo} & \bullet \text{ooo} \end{array}$

Erdős-Hajnal conjecture

In strict classes, cliques or stable sets should be large.

Typical behavior

In random graphs G(n, 1/2), both ω and α have size $O(\log n)$.

EH-conjecture: For every strict class \mathcal{G} , there exists ε such that every graph $G \in \mathcal{G}$ has a stable set or a clique of size n^{ε} . True for:

• Comparability graphs (or more generally Berge graphs).

$\begin{array}{cccc} \text{Definitions} & \text{Computing } \alpha & \text{The Stable Set polytope} & \chi \text{-bounded classes} & \textbf{Erdős-Hajnal conjecture} & \text{Complexity of graph classes?} \\ \text{oo} & \text{oo} & \text{ooo} & \bullet \text{ooo} \end{array}$

Erdős-Hajnal conjecture

In strict classes, cliques or stable sets should be large.

Typical behavior

In random graphs G(n, 1/2), both ω and α have size $O(\log n)$.

EH-conjecture: For every strict class \mathcal{G} , there exists ε such that every graph $G \in \mathcal{G}$ has a stable set or a clique of size n^{ε} . True for:

- Comparability graphs (or more generally Berge graphs).
- Bull-free graphs (Chudnovsky).
Erdős-Hajnal conjecture

In strict classes, cliques or stable sets should be large.

Typical behavior

In random graphs G(n, 1/2), both ω and α have size $O(\log n)$.

EH-conjecture: For every strict class \mathcal{G} , there exists ε such that every graph $G \in \mathcal{G}$ has a stable set or a clique of size n^{ε} . True for:

- Comparability graphs (or more generally Berge graphs).
- Bull-free graphs (Chudnovsky).
- (P_5 and $\overline{P_7}$)-free graphs (Chudnovsky, Seymour, Zwols).

Erdős-Hajnal conjecture

In strict classes, cliques or stable sets should be large.

Typical behavior

In random graphs G(n, 1/2), both ω and α have size $O(\log n)$.

EH-conjecture: For every strict class \mathcal{G} , there exists ε such that every graph $G \in \mathcal{G}$ has a stable set or a clique of size n^{ε} . True for:

- Comparability graphs (or more generally Berge graphs).
- Bull-free graphs (Chudnovsky).
- (P_5 and $\overline{P_7}$)-free graphs (Chudnovsky, Seymour, Zwols).

Open when forbidding:

Erdős-Hajnal conjecture

In strict classes, cliques or stable sets should be large.

Typical behavior

In random graphs G(n, 1/2), both ω and α have size $O(\log n)$.

EH-conjecture: For every strict class \mathcal{G} , there exists ε such that every graph $G \in \mathcal{G}$ has a stable set or a clique of size n^{ε} . True for:

- Comparability graphs (or more generally Berge graphs).
- Bull-free graphs (Chudnovsky).
- $(P_5 \text{ and } \overline{P_7})$ -free graphs (Chudnovsky, Seymour, Zwols).

Open when forbidding:

• Cycle C₅

Erdős-Hajnal conjecture

In strict classes, cliques or stable sets should be large.

Typical behavior

In random graphs G(n, 1/2), both ω and α have size $O(\log n)$.

EH-conjecture: For every strict class \mathcal{G} , there exists ε such that every graph $G \in \mathcal{G}$ has a stable set or a clique of size n^{ε} . True for:

- Comparability graphs (or more generally Berge graphs).
- Bull-free graphs (Chudnovsky).
- $(P_5 \text{ and } \overline{P_7})$ -free graphs (Chudnovsky, Seymour, Zwols).

Open when forbidding:

- Cycle C₅
- Path P₅

Erdős-Hajnal conjecture

In strict classes, cliques or stable sets should be large.

Typical behavior

In random graphs G(n, 1/2), both ω and α have size $O(\log n)$.

EH-conjecture: For every strict class \mathcal{G} , there exists ε such that every graph $G \in \mathcal{G}$ has a stable set or a clique of size n^{ε} . True for:

- Comparability graphs (or more generally Berge graphs).
- Bull-free graphs (Chudnovsky).
- $(P_5 \text{ and } \overline{P_7})$ -free graphs (Chudnovsky, Seymour, Zwols).

Open when forbidding:

- Cycle C₅
- Path P₅
- Even both!

 $\begin{array}{c|c} \text{Definitions} \\ \text{oo} \\ \end{array} & \begin{array}{c} \text{Computing } \alpha \\ \text{oo} \\ \end{array} & \begin{array}{c} \text{The Stable Set polytope} \\ \text{oo} \\ \end{array} & \begin{array}{c} \chi \text{-bounded classes} \\ \text{ooo} \\ \end{array} & \begin{array}{c} \text{Erdős-Hajnal conjecture} \\ \text{ooperative of graph classes} \\ \text{ooo} \\ \end{array} & \begin{array}{c} \text{ooperative of graph classes} \\ \text{ooo} \\ \end{array} & \begin{array}{c} \text{ooperative of graph classes} \\ \text{ooo} \\ \end{array} & \begin{array}{c} \text{ooperative of graph classes} \\ \text{ooo} \\ \end{array} & \begin{array}{c} \text{ooperative of graph classes} \\ \text{ooo} \\ \end{array} & \begin{array}{c} \text{ooperative of graph classes} \\ \text{ooo} \\ \end{array} & \begin{array}{c} \text{ooperative of graph classes} \\ \text{ooo} \\ \end{array} & \begin{array}{c} \text{ooperative of graph classes} \\ \text{ooperative of graph classes} \\ \end{array} & \begin{array}{c} \text{ooperative of graph classes} \\ \text{ooperative of graph classes} \\ \end{array} & \begin{array}{c} \text{ooperative of graph classes} \end{array} & \begin{array}{c} \text{ooperative of graph classes} \\ \end{array} & \begin{array}{c} \text{ooperative of graph classes} \end{array} & \begin{array}{c} \text{ooperative of graph classes$

Paths and Antipaths

Theorem (Bousquet, Lagoutte and T., 2013)

For every k, the Erdős-Hajnal conjecture holds for $(P_k, \overline{P_k})$ -free graphs.

 $\begin{array}{c|c} \text{Definitions} \\ \text{oo} \\ \end{array} & \begin{array}{c} \text{Computing } \alpha \\ \text{oo} \\ \end{array} & \begin{array}{c} \text{The Stable Set polytope} \\ \text{oo} \\ \end{array} & \begin{array}{c} \chi \text{-bounded classes} \\ \text{ooo} \\ \end{array} & \begin{array}{c} \text{Erdős-Hajnal conjecture} \\ \text{ooperative of graph classes} \\ \text{ooo} \\ \end{array} & \begin{array}{c} \text{ooperative of graph classes} \\ \text{ooo} \\ \end{array} & \begin{array}{c} \text{ooperative of graph classes} \\ \text{ooo} \\ \end{array} & \begin{array}{c} \text{ooperative of graph classes} \\ \text{ooo} \\ \end{array} & \begin{array}{c} \text{ooperative of graph classes} \\ \text{ooo} \\ \end{array} & \begin{array}{c} \text{ooperative of graph classes} \\ \text{ooo} \\ \end{array} & \begin{array}{c} \text{ooperative of graph classes} \\ \text{ooo} \\ \end{array} & \begin{array}{c} \text{ooperative of graph classes} \\ \text{ooperative of graph classes} \\ \end{array} & \begin{array}{c} \text{ooperative of graph classes} \\ \text{ooperative of graph classes} \\ \end{array} & \begin{array}{c} \text{ooperative of graph classes} \end{array} & \begin{array}{c} \text{ooperative of graph classes} \\ \end{array} & \begin{array}{c} \text{ooperative of graph classes} \end{array} & \begin{array}{c} \text{ooperative of graph classes$

Paths and Antipaths

Theorem (Bousquet, Lagoutte and T., 2013)

For every k, the Erdős-Hajnal conjecture holds for $(P_k, \overline{P_k})$ -free graphs.

A class \mathcal{G} has the **linear bipartite property** if there exists c such that:

 $\begin{array}{c|c} \text{Definitions} \\ \text{oo} \\ \end{array} & \begin{array}{c} \text{Computing } \alpha \\ \text{oo} \\ \end{array} & \begin{array}{c} \text{The Stable Set polytope} \\ \text{oo} \\ \end{array} & \begin{array}{c} \chi \text{-bounded classes} \\ \text{ooo} \\ \end{array} & \begin{array}{c} \text{Erdős-Hajnal conjecture} \\ \text{ooperative operative operati$

Paths and Antipaths

Theorem (Bousquet, Lagoutte and T., 2013)

For every k, the Erdős-Hajnal conjecture holds for $(P_k, \overline{P_k})$ -free graphs.

A class \mathcal{G} has the **linear bipartite property** if there exists c such that:

Every graph $G \in \mathcal{G}$, has two disjoint subsets of vertices X, Y of size c.n which are pairwise completely connected or completely disconnected.

 $\begin{array}{c|c} \text{Definitions} \\ \text{oo} \\ \end{array} & \begin{array}{c} \text{Computing } \alpha \\ \text{oo} \\ \end{array} & \begin{array}{c} \text{The Stable Set polytope} \\ \text{oo} \\ \end{array} & \begin{array}{c} \chi \text{-bounded classes} \\ \text{oo} \\ \end{array} & \begin{array}{c} \text{Erdős-Hajnal conjecture} \\ \text{oopole conjecture} \\ \text{oopole conjecture} \\ \end{array} & \begin{array}{c} \text{Complexity of graph classes} \\ \text{oopole conjecture} \\ \text{oopole conjecture} \\ \end{array} & \begin{array}{c} \text{Complexity of graph classes} \\ \text{oopole conjecture} \\ \text{oopole conjecture} \\ \end{array} & \begin{array}{c} \text{Complexity of graph classes} \\ \text{oopole conjecture} \\ \text{oopole conjecture} \\ \end{array} & \begin{array}{c} \text{Complexity of graph classes} \\ \text{oopole conjecture} \\ \text{oopole conjecture} \\ \end{array} & \begin{array}{c} \text{Complexity of graph classes} \\ \text{oopole conjecture} \\ \end{array} & \begin{array}{c} \text{Complexity of graph classes} \\ \text{oopole conjecture} \\ \end{array} & \begin{array}{c} \text{Complexity of graph classes} \\ \end{array} & \end{array} & \begin{array}{c} \text{Complexity of graph classes} \\ \end{array} & \begin{array}{c} \text{Comple$

Paths and Antipaths

Theorem (Bousquet, Lagoutte and T., 2013)

For every k, the Erdős-Hajnal conjecture holds for $(P_k, \overline{P_k})$ -free graphs.

A class \mathcal{G} has the **linear bipartite property** if there exists c such that:

Every graph $G \in \mathcal{G}$, has two disjoint subsets of vertices X, Y of size c.n which are pairwise completely connected or completely disconnected.

Proposition (Alon et al.)

Linear bipartite property implies Erdős-Hajnal.

 $\begin{array}{c|c} \text{Definitions} & \text{Computing } \alpha \\ 00 & 0 \end{array} & \begin{array}{c} \text{The Stable Set polytope} & \chi \text{-bounded classes} \\ 000 & 0 \end{array} & \begin{array}{c} \text{Erdős-Hajnal conjecture} & \text{Complexity of graph classes?} \\ 000 & 0 \end{array} \end{array}$

Densification/Sparsification

Theorem (Rődl)

For every k and ε , there exists c such that every graph on n vertices contains one of the following:

 $\begin{array}{c|c} \text{Definitions} & \text{Computing } \alpha \\ \text{oo} & \text{oo} \end{array} & \begin{array}{c} \text{The Stable Set polytope} & \chi \text{-bounded classes} \\ \text{oo} & \text{oo} \end{array} & \begin{array}{c} \text{Erdős-Hajnal conjecture} & \text{Complexity of graph classes?} \\ \text{oo} \bullet \end{array} \\ \end{array}$

Densification/Sparsification

Theorem (Rődl)

For every k and ε , there exists c such that every graph on n vertices contains one of the following:

• all induced graphs on k vertices.

 $\begin{array}{c|c} \text{Definitions} & \text{Computing } \alpha \\ \text{oo} & \text{oo} \end{array} & \begin{array}{c} \text{The Stable Set polytope} & \chi \text{-bounded classes} \\ \text{oo} & \text{oo} \end{array} & \begin{array}{c} \text{Erdős-Hajnal conjecture} & \text{Complexity of graph classes?} \\ \text{oo} \bullet \end{array} \\ \end{array}$

Densification/Sparsification

Theorem (Rődl)

For every k and ε , there exists c such that every graph on n vertices contains one of the following:

- all induced graphs on k vertices.
- a subset of size c.n with edge density at least 1ε .

 $\begin{array}{c|c} \text{Definitions} & \text{Computing } \alpha \\ 00 & 0 \end{array} & \begin{array}{c} \text{The Stable Set polytope} & \chi \text{-bounded classes} \\ 000 & 0 \end{array} & \begin{array}{c} \text{Erdős-Hajnal conjecture} & \text{Complexity of graph classes?} \\ 000 & 0 \end{array} \end{array}$

Densification/Sparsification

Theorem (Rődl)

For every k and ε , there exists c such that every graph on n vertices contains one of the following:

- all induced graphs on k vertices.
- a subset of size c.n with edge density at least 1ε .
- a subset of size c.n with edge density at most ε .

 $\begin{array}{c|c} \text{Definitions} & \text{Computing } \alpha \\ \text{oo} & \text{oo} \end{array} & \begin{array}{c} \text{The Stable Set polytope} \\ \text{oo} & \text{oo} \end{array} & \begin{array}{c} \chi \text{-bounded classes} \\ \text{ooo} \end{array} & \begin{array}{c} \text{Erdős-Hajnal conjecture} \\ \text{ooo} \end{array} & \begin{array}{c} \text{Complexity of graph classes?} \\ \text{ooo} \end{array} \\ \end{array}$

Densification/Sparsification

Theorem (Rődl)

For every k and ε , there exists c such that every graph on n vertices contains one of the following:

- all induced graphs on k vertices.
- a subset of size c.n with edge density at least 1ε .
- a subset of size c.n with edge density at most ε .

Remark

Easy proof with bad bounds via Szemerédi regularity lemma, harder proof with good bounds provided by Fox and Sudakov

 $\begin{array}{c|c} \text{Definitions} & \text{Computing } \alpha \\ \text{oo} & \text{oo} \end{array} & \begin{array}{c} \text{The Stable Set polytope} & \chi \text{-bounded classes} \\ \text{ooo} & \text{ooo} \end{array} & \begin{array}{c} \text{Erdős-Hajnal conjecture} & \text{Complexity of graph classes?} \\ \text{ooo} \end{array} \\ \end{array}$

Densification/Sparsification

Theorem (Rődl)

For every k and ε , there exists c such that every graph on n vertices contains one of the following:

- all induced graphs on k vertices.
- a subset of size c.n with edge density at least 1ε .
- a subset of size c.n with edge density at most ε .

Remark

Easy proof with bad bounds via Szemerédi regularity lemma, harder proof with good bounds provided by Fox and Sudakov

End of the proof, à la Gyárfás

Definitions	Computing α	The Stable Set polytope	χ -bounded classes	Erdős-Hajnal conjecture	Complexity of graph classes?

Complexity of graph classes?

A class of graph is "easy" if :

• Computing α is easy.

- Computing α is easy.
- STAB(G) has extended formulations.

- Computing α is easy.
- STAB(G) has extended formulations.
- χ is bounded in terms of ω .

- Computing α is easy.
- STAB(G) has extended formulations.
- χ is bounded in terms of ω .
- Sum of Betti numbers of the stable set complex is bounded.

- Computing α is easy.
- STAB(G) has extended formulations.
- χ is bounded in terms of ω .
- Sum of Betti numbers of the stable set complex is bounded.
- α or ω is at least n^{ε} .

- Computing α is easy.
- STAB(G) has extended formulations.
- χ is bounded in terms of ω .
- Sum of Betti numbers of the stable set complex is bounded.
- α or ω is at least n^{ε} .
- The linear bipartite property holds.

- Computing α is easy.
- STAB(G) has extended formulations.
- χ is bounded in terms of ω .
- Sum of Betti numbers of the stable set complex is bounded.
- α or ω is at least n^{ε} .
- The linear bipartite property holds.
- Propose your own...