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Stable sets in Graphs

Nicolas Bousquet (McGill), Marthe Bonamy (Montpellier),
Pierre Charbit (LIAFA), Aurélie Lagoutte (ENS Lyon),
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Key definitions

A stable set in a graph G = (V ,E ) is a set of pairwise non
adjacent vertices.

Maximum size is α(G).
A clique is a set of pairwise adjacent vertices. Maximum size is
ω(G).
The chromatic number χ(G) is the minimum number of stable
sets partitioning V .

A clique intersects a stable set on at most one vertex.
ω(G) ≤ χ(G). (Gap may be arbitrary even when ω = 2.)
G is perfect when all induced subgraphs H satisfy

ω(H) = χ(H)

.
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Main question

A class of graphs G is closed under induced subgraphs.

Triangle-free graphs.
H-free graphs where H is some fixed graph.
Bipartite graphs (all induced odd cycles are forbidden).
Berge graphs (all induced odd cycles with length at least 5
and their complements are forbidden).
Line graphs, comparability graphs, etc.
Your favorite strict class, i.e. not all graphs.

Question
Stable sets should behave well (or better...) in strict classes. How
to express ”good behaviour”?
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Main question

A class of graphs G is closed under induced subgraphs.

Triangle-free graphs.
H-free graphs where H is some fixed graph.
Bipartite graphs (all induced odd cycles are forbidden).

Berge graphs (all induced odd cycles with length at least 5
and their complements are forbidden).
Line graphs, comparability graphs, etc.
Your favorite strict class, i.e. not all graphs.

Question
Stable sets should behave well (or better...) in strict classes. How
to express ”good behaviour”?

3/19



Definitions Computing α The Stable Set polytope χ-bounded classes Erdős-Hajnal conjecture Complexity of graph classes?
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Computing α
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Easy classes

α(G) is polynomial to compute in the following classes:

Bipartite graphs. (Complement of minimum vertex cover.)
Comparability graphs. (Maximum antichain.)
Line graphs of bipartite graphs. (Bipartite matching.)
Berge graphs. (See later)
Line graphs. (Edmonds)
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Forbidding a single graph

Let G with m edges, and G∗∗ be the graph obtained when
subdividing every edge of G twice. Then

α(G∗∗) = α(G) + m

Hence α is hard to compute even in very sparse graphs.
Construction involves long induced paths.

Open Problem:
Compute α in polytime when forbidding a fixed induced path Pk .

Theorem (Lokshtanov, Vatshelle and Villanger, SODA 2014)
There is a polytime algorithm for P5-free graphs.

Uses potential maximal cliques (Bouchitté and Todinca).
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Stable Set polytope
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The Stable Set polytope

To every stable set S of a graph G = (V ,E ), we associate its
characteristic (0, 1) vector xS in R|V |.

The convex hull of all such xS is the stable set polytope
STAB(G).
For every clique K , the inequality

∑
vi∈K vi ≤ 1 is a valid inequality

for STAB(G), called clique constraints.

The following are equivalent

G is perfect.
STAB(G) is given by clique and nonnegativity constraints
(Fulkerson, Chvatal).
G is Berge (Chudnovsky, Robertson, Seymour, Thomas).
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Extended formulations

Theorem (Lovász)
When G is perfect, STAB(G) is a semidefinite domain. Hence
α(G) can be computed using SDP.

Open Problem:
Combinatorial poly(n) algorithm to compute α in perfect graphs.

When G is perfect, describe STAB(G) with few constraints?

Open Problem:
When G is perfect, is STAB(G) the projection of a polytope with
poly(n) facets? extended formulations

Do extended formulations always explain easiness of computing α?

Theorem (Rothvoss, STOC 2014)
STAB of line graphs does not have extended formulations.
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χ-bounded classes
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Gyárfás’ Conjectures
A graph class G is χ-bounded if there is a function f such that
every G ∈ G satisfies χ(G) ≤ f (ω(G)).

Since there are triangle-free graphs with high chromatic number,
the class of all graphs is not χ-bounded.

Theorem (Gyárfás)
Pk -free graphs are χ-bounded.

Open problems: The following classes are χ-bounded:

Graphs not inducing a fixed tree T .
Graphs not inducing cycles of length at least k.
Graphs not inducing odd cycles of length at least 5.

Theorem (Scott and Seymour 2014)
Graphs not inducing odd cycles of length at least 5 are χ-bounded.
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More on χ-boundedness
The hard case for χ-boundedness is generally to show that
triangle-free graphs in the class have bounded χ. This motivated:

Conjecture (Trotignon and T.)
Every graph with huge chromatic number has a large clique, or an
induced triangle-free graph with large chromatic number.

Remark 1. The same statement without ”induced” is a beautiful
proof of Rődl.
Remark 2. A (dishonest!) reformulation of Scott and Seymour is:
Every graph with huge chromatic number has a large clique, or an
induced triangle-free graph with chromatic number at least 3.
Wanted
Every graph with large chromatic number has a ”rather complex”
induced subgraph.
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Stable set complex
Kalai and Meshulam proposed the following (rather complex)
measure of ”rather complex”:

The sum bn(G) of the Betti
numbers of the stable set complex of G .

Conjecture (Kalai and Meshulam)
Every graph with huge chromatic number has an induced subgraph
H with large bn(H).

Even bn(G) ≥ 2 was open, but implied by the following:

Theorem (Bonamy, Charbit T., 2014)
Every graph with large chromatic number has an induced cycle
with length 0 mod 3.

Kalai and Meshulam conjecture that if G has no induced 0 mod 3
cycle, the number of odd stable sets and the number of even stable
sets differ by at most 1.
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Erdős-Hajnal conjecture
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Erdős-Hajnal conjecture
In strict classes, cliques or stable sets should be large.

Typical behavior
In random graphs G(n, 1/2), both ω and α have size O(log n).

EH-conjecture: For every strict class G, there exists ε such that
every graph G ∈ G has a stable set or a clique of size nε.
True for:

Comparability graphs (or more generally Berge graphs).
Bull-free graphs (Chudnovsky).
(P5 and P7)-free graphs (Chudnovsky, Seymour, Zwols).

Open when forbidding:

Cycle C5

Path P5

Even both!
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Erdős-Hajnal conjecture
In strict classes, cliques or stable sets should be large.
Typical behavior
In random graphs G(n, 1/2), both ω and α have size O(log n).

EH-conjecture: For every strict class G, there exists ε such that
every graph G ∈ G has a stable set or a clique of size nε.

True for:
Comparability graphs (or more generally Berge graphs).
Bull-free graphs (Chudnovsky).
(P5 and P7)-free graphs (Chudnovsky, Seymour, Zwols).

Open when forbidding:

Cycle C5

Path P5

Even both!

15/19



Definitions Computing α The Stable Set polytope χ-bounded classes Erdős-Hajnal conjecture Complexity of graph classes?
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Erdős-Hajnal conjecture
In strict classes, cliques or stable sets should be large.
Typical behavior
In random graphs G(n, 1/2), both ω and α have size O(log n).

EH-conjecture: For every strict class G, there exists ε such that
every graph G ∈ G has a stable set or a clique of size nε.
True for:

Comparability graphs (or more generally Berge graphs).
Bull-free graphs (Chudnovsky).
(P5 and P7)-free graphs (Chudnovsky, Seymour, Zwols).

Open when forbidding:

Cycle C5

Path P5

Even both!

15/19



Definitions Computing α The Stable Set polytope χ-bounded classes Erdős-Hajnal conjecture Complexity of graph classes?
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Paths and Antipaths

Theorem (Bousquet, Lagoutte and T., 2013)
For every k, the Erdős-Hajnal conjecture holds for (Pk ,Pk)-free
graphs.

A class G has the linear bipartite property if there exists c such
that:
Every graph G ∈ G, has two disjoint subsets of vertices X ,Y of
size c.n which are pairwise completely connected or completely
disconnected.

Proposition (Alon et al.)
Linear bipartite property implies Erdős-Hajnal.

16/19



Definitions Computing α The Stable Set polytope χ-bounded classes Erdős-Hajnal conjecture Complexity of graph classes?

Paths and Antipaths

Theorem (Bousquet, Lagoutte and T., 2013)
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Densification/Sparsification

Theorem (Rődl)
For every k and ε, there exists c such that every graph on n
vertices contains one of the following:

all induced graphs on k vertices.
a subset of size c.n with edge density at least 1− ε.
a subset of size c.n with edge density at most ε.

Remark
Easy proof with bad bounds via Szemerédi regularity lemma,
harder proof with good bounds provided by Fox and Sudakov

End of the proof, à la Gyárfás
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Densification/Sparsification

Theorem (Rődl)
For every k and ε, there exists c such that every graph on n
vertices contains one of the following:

all induced graphs on k vertices.
a subset of size c.n with edge density at least 1− ε.
a subset of size c.n with edge density at most ε.

Remark
Easy proof with bad bounds via Szemerédi regularity lemma,
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Complexity of graph classes?
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Some guesses

A class of graph is ”easy” if :

Computing α is easy.

STAB(G) has extended formulations.
χ is bounded in terms of ω.
Sum of Betti numbers of the stable set complex is bounded.
α or ω is at least nε.
The linear bipartite property holds.
Propose your own...
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