Efficiently querying incomplete data

Cristina Sirangelo
LSV, ENS-Cachan
joint work with Amélie Gheerbrant and Leonid Libkin

February 3rd 2015
Plan

ؤول Introduction

↳ Incomplete data model

↳ Querying incomplete data

↳ the key to tractability: naïve evaluation

↳ What makes naïve evaluation work?

↳ a general framework

↳ Applicability of the framework

↳ Moving forward
Incomplete data

Data incompleteness: missing/unknown data values, partially available data, ...

Reasons:

mistakes: wrong/missing entries
restrictions on data access
data heterogeneity: data exchange/integration
Assume data has to be transferred from one data source to another.

Incompleteness and data heterogeneity

Commonly only some concepts shared by the two data sources

✓ e.g. no information about the manager from the source
Querying incomplete data

Q: which employees are managers?
Querying incomplete data

Semantics of query answering
- How should the result of a query be defined in the presence of incompleteness?

Query evaluation
- How do we evaluate a query on an incomplete database?
- Can this be done efficiently?

Q: which employees are managers?

<table>
<thead>
<tr>
<th>Employee</th>
<th>Manager</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>mgr</td>
</tr>
<tr>
<td>Green</td>
<td>?</td>
</tr>
<tr>
<td>White</td>
<td>?</td>
</tr>
<tr>
<td>Brown</td>
<td>?</td>
</tr>
<tr>
<td>Black</td>
<td>?</td>
</tr>
</tbody>
</table>

incomplete database
Incompleteness in theory and practice

Incompleteness in database systems

- **Semantics of query answering**: poorly designed
- **Query evaluation**: very efficient, optimized query engines

eg:

- In SQL, the standard relational database query language, the following are consistent statements for sets \(X, Y\)

 \(|X| > |Y| \text{ and } X - Y = \emptyset\)

- This may occur if \(Y\) contains incomplete information (SQL nulls)
Incompleteness in theory and practice

Incompleteness in database systems

- **Semantics of query answering**: poorly designed
- **Query evaluation**: very efficient, optimized query engines

Theoretical framework for incompleteness
[Imielinski-Lipski, Abiteboul-Kanellakis-Grahne, etc. 80's]

- **Semantics of query answering**: clean framework, suitable semantics
- **Query evaluation**: hard
Incompleteness in theory and practice

Incompleteness in database systems

- Semantics of query answering: poorly designed
- Query evaluation: very efficient, optimized query engines

Theoretical framework for incompleteness
[Imielinski-Lipski, Abiteboul-Kanellakis-Grahne, etc. 80's]

- Semantics of query answering: clean framework, suitable semantics
- Query evaluation: hard

Bridging the gap between theory and systems:
answer queries correctly, use classical query engines

not satisfactorily addressed even in the simplest data model
Plan

- Introduction
- Incomplete data model
- Querying incomplete data
 - the key to tractability: naïve evaluation
- What makes naïve evaluation work?
 - a general framework
- Applicability of the framework
- Moving forward
Incomplete relational data

Database schema (relational signature) σ: a set of relation symbols, with arities

$$\sigma = \{ \text{Employee, Manager} \} \quad \text{arity(Employee)} = 1, \quad \text{arity(Manager)} = 2$$

Incomplete database instance (naïve table) of schema σ [Imielinski, Lipski ’84]:

associates to each relation symbol R of σ a finite subset of $(\text{Const} \cup \text{Var})^{\text{arity}(R)}$

<table>
<thead>
<tr>
<th>Employee</th>
<th>Manager</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>x_1</td>
<td>x_1</td>
</tr>
<tr>
<td>Brown</td>
<td>Brown</td>
</tr>
<tr>
<td>Green</td>
<td>x_2</td>
</tr>
</tbody>
</table>

Const: a countably infinite set of constants

Var: a countably infinite set of variables (nulls)

Complete instance: over Const

$\text{dom}(I)$: the subset of $\text{Const} \cup \text{Var}$ occurring in I
Any incomplete database represents a set of complete databases (possible worlds)

Semantics of incompleteness:
a function $\llbracket I \rrbracket$ associating with each incomplete database a set of complete databases
Semantics of incompleteness

Three well known relational semantics:

- **OWA** (*Open World Assumption*) [Imielinski-Lipski ’84]
- **CWA** (*Closed World Assumption*) [Reiter ’77, Imielinski-Lipski ’84]
- **WCWA** (*Weak Closed World Assumption*) [Reiter ’77]
Semantics of incompleteness

OWA:

\[[I]_{OWA} = \{ D \text{ over } Const \mid D \supseteq v(I) \text{ for some } v: Var \rightarrow Const \}\]

\(v: valuation\)

Interpretation of incompleteness:

- missing data values, missing tuples
Semantics of incompleteness

CWA:
\[
\llbracket I \rrbracket_{CWA} = \{ D \mid D = v(I) \text{ for some } v : \text{Var} \to \text{Const} \}
\]

Interpretation of incompleteness:
• missing data values
• no missing tuples
Semantics of incompleteness

\[[I]_{WCWA} = \{ D \mid D \supseteq v(I), \text{dom}(D) = \text{dom}(v(I)) \text{ for some } v : \text{Var} \rightarrow \text{Const} \} \]

Interpretation of incompleteness:
- missing data values, missing tuples
- no missing domain elements
Plan

➡ Introduction

➡ Incomplete data model

➡ Querying incomplete data
 ➔ the key to tractability: naïve evaluation

➡ What makes naïve evaluation work?
 ➔ a general framework

➡ Applicability of the framework

➡ Moving forward
Query over σ: a mapping Q associating to each complete instance I of σ a relation over $\text{dom}(I)$.

Q: which employees are managers?

<table>
<thead>
<tr>
<th>Employee</th>
<th>Manager</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>White</td>
<td>White</td>
</tr>
<tr>
<td>Brown</td>
<td>Brown</td>
</tr>
</tbody>
</table>

usually expressed in fragments of *First Order logic (FO)*

$$\varphi_Q(x) = \text{Employee}(x) \land \exists y \text{ Manager}(x, y)$$
Queries

Boolean query over σ:
a mapping Q associating to each complete instance I of σ a value in $\{true, false\}$

$$Q: \exists x, y, z \ (\text{Manager}(x, y) \land \text{Manager}(z, x))$$
(there is a manager who has a manager)

<table>
<thead>
<tr>
<th>Employee</th>
<th>Manager</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>White</td>
<td>White</td>
</tr>
<tr>
<td>Brown</td>
<td>Brown</td>
</tr>
<tr>
<td></td>
<td>Green</td>
</tr>
<tr>
<td></td>
<td>Black</td>
</tr>
</tbody>
</table>

I \rightarrow $true$ $Q(I)$
Querying incomplete databases

Semantics of query answering: *certain answers*

\[\text{cert}_Q(I) = \bigwedge_{D \in [I]} Q(D) \]
Certain answers

Example

Q: “There is a manager who has a manager”

\[\exists x, y, z \ (\text{Manager}(x, y) \land \text{Manager}(z, x)) \]

\[
\begin{array}{c|c|c}
\text{Employee} & \text{Manager} \\
\hline
\text{Green} & \text{Green} & \mathbf{x_1} \\
\text{Brown} & \mathbf{x_1} & \text{Brown} \\
\text{Green} & \text{Green} & \mathbf{x_2} \\
\end{array}
\]

\[
\begin{array}{c|c|c}
\text{Manager} & \text{Manager} \\
\hline
\text{Green} & \text{Green} & \text{White} \\
\text{White} & \text{White} & \text{Brown} \\
\text{Brown} & \text{Green} & \text{Black} \\
\end{array}
\]

\[
\left[\text{I}\right]_{\text{CWA} / \text{OWA} / \text{WCWA}}
\]

\[
\text{cert}_\text{Q}(\text{I}) = \text{true}
\]

under either CWA, OWA and WCWA
Computing certain answers

Need to use the available (incomplete) data

Computing certain answers on I: usually hard

- from coNP-complete to undecidable for FO [Imielinski-Lipski '84, Abiteboul et al '91]
Naïve evaluation works for Q:

$Q(I)$: Q evaluated directly on I, as if variables were new distinct constants

$x_i \neq x_j$ for $i \neq j$

$x_i \neq c$ for all $c \in \text{Const}$

$Q(I) = \text{cert}_Q(I)$ for all I
Naïve evaluation

Example

Q: “There is a manager who has a manager”

\[\exists x, y, z \ (\text{Manager}(x, y) \land \text{Manager}(z, x)) \]

<table>
<thead>
<tr>
<th>Employee</th>
<th>Manager</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>(x_1)</td>
<td>(x_1)</td>
</tr>
<tr>
<td>Brown</td>
<td>Brown</td>
</tr>
<tr>
<td></td>
<td>(x_2)</td>
</tr>
</tbody>
</table>

\[Q(I) = \text{true} \]

\[\text{cert}_Q(I) = \text{true} \text{ under CWA, OWA and WCWA} \]
Naïve evaluation

Example Q: “There is a manager who has a manager”
\[\exists x, y, z \ (\text{Manager}(x, y) \land \text{Manager}(z, x)) \]

Generalizing:
\[Q(I) = \text{cert}_Q(I) \text{ for all } I \]
\[\Rightarrow \text{naïve evaluation works for } Q \text{ under CWA, OWA and WCWA} \]
Naïve evaluation in theory and practice

Certain answers: an entailment problem (checking that $I \models Q$) HARD

Naïve evaluation: a model-checking problem (checking $I \vDash Q$) EFFICIENT

- PTIME in the size of the instance for FO queries
- based on classical query evaluation algorithms of database engines
- can benefit from query optimization techniques

Naïve evaluation works

- correct query answering semantics, classical query evaluation algorithms / entailment reduces to (straightforward) model-checking

Clearly not always possible! (undecidable vs. PTIME)
Naïve evaluation does not always work

A concrete example

Q: “All employees are managers”

\[\forall x (\text{Employee}(x) \rightarrow \exists y \text{ Manager}(x, y)) \]

\[
\begin{array}{|c|c|}
\hline
\text{Employee} & \text{Manager} \\
\hline
\text{Green} & \text{Green} \\
\hline
x_1 & x_1 \\
\hline
\text{Brown} & \text{Brown} \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|}
\hline
\text{Green} & \text{White} \\
\hline
\text{White} & \text{Brown} \\
\hline
\text{Brown} & \text{Black} \\
\hline
\end{array}
\]

\[Q(I) = \text{true} \]

\[\text{cert}_Q(I) = \text{false} \text{ under OWA and WCWA} \]

\[\Rightarrow \text{naïve evaluation does not work for Q under OWA and WCWA} \]
Plan

- Introduction
- Incomplete data model
- Querying incomplete data
 - the key to tractability: naïve evaluation
- What makes naïve evaluation work?
 - a general framework
- Applicability of the framework
- Moving forward
Relating naïve evaluation and syntactic fragments

A unified framework for relating naïve evaluation and syntactic fragments for several possible semantics:

- Naïve evaluation works for Q under $[]$
- Q is "monotone" w.r.t. $[]$
- Q is preserved under a class of homomorphisms
- Preservation theorems
- Q is expressible in a syntactic fragment
Monotonicity and preservation

Naïve evaluation works for Q under $[]$

Q is “monotone” w.r.t. $[]$

Q is preserved under a class of homomorphisms

Preservation theorems

Q is expressible in a syntactic fragment

Shown in a very general setting subsuming every data model / semantics of incompleteness (even beyond relational databases)
Naïve evaluation and monotonicity

Database domain: a quadruple \(\langle D, C, \llbracket \rrbracket, \approx \rangle \)

<table>
<thead>
<tr>
<th>(D) : a set</th>
<th>database objects (complete and incomplete)</th>
<th>all naïve tables over a fixed schema (\sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C) : a subset of (D)</td>
<td>complete database objects</td>
<td>all complete instances over (\sigma)</td>
</tr>
<tr>
<td>(\llbracket \rrbracket : D \rightarrow 2^C)</td>
<td>semantics of incompleteness</td>
<td>(\llbracket \rrbracket_{OVA}, \llbracket \rrbracket_{CWA}, \text{etc.})</td>
</tr>
<tr>
<td>(\approx) : an equivalence relation on (D)</td>
<td>equivalence of objects (w.r.t. queries)</td>
<td>isomorphism of relational instances</td>
</tr>
</tbody>
</table>

Boolean query: \(Q : D \rightarrow \{\text{true, false}\}\)

- generic: \(x \approx y\) implies \(Q(x) = Q(y)\)
- monotone w.r.t. \(\llbracket \rrbracket\): \(y \in \llbracket x \rrbracket\) implies \(Q(x) \Rightarrow Q(y)\)
Naïve evaluation and monotonicity

Naïve evaluation works for \(Q \) under \(\llbracket \cdot \rrbracket \)

\(Q \) is “monotone” w.r.t. \(\llbracket \cdot \rrbracket \)

\(Q \) is preserved under a class of homomorphisms

Preservation theorems

\(Q \) is expressible in a syntactic fragment

Over a saturated database domain, if \(Q \) is a generic Boolean query:

Naïve evaluation works for \(Q \) iff \(Q \) is monotone w.r.t. \(\llbracket \cdot \rrbracket \)

Saturation property for \(\langle \mathcal{D}, C, \llbracket \cdot \rrbracket, \approx \rangle \):

For all \(x \in \mathcal{D} \) there exists \(y \in \llbracket x \rrbracket \) \(y \approx x \)

holds for most common semantics
Monotonicity and preservation

Naïve evaluation works for Q under $\llbracket \llbracket$.

Q is “monotone” w.r.t. $\llbracket \llbracket$.

Q is preserved under a class of homomorphisms.

- monotonicity = “preservation” under the semantics
- relational semantics: usually homomorphism-based

Preservation theorems

Q is expressible in a syntactic fragment.
Monotonicity and preservation

Monotonicity and preservation

Homomorphism $D \rightarrow D'$: a mapping $h: \text{dom}(D) \rightarrow \text{dom}(D')$ s.t. $h(D) \subseteq D'$

![Diagram](image)

D and D' with elements a, b, c, d

- $a, b \rightarrow c$
- $a \rightarrow d$

Q preserved under homomorphism:

$D \rightarrow D'$ implies $Q(D) \Rightarrow Q(D')$ for all D

Many variants: onto homomorphism, strong onto homomorphism, ...

Monotonicity w.r.t different semantics \leftrightarrow preservation under different notions of homomorphism
Preservation and syntactic fragments

Naïve evaluation works for Q under $[\cdot]$

Q is “monotone” w.r.t. $[\cdot]$

Q is preserved under a class of homomorphisms

Q is expressible in a syntactic fragment

Preservation theorems

- syntactic characterizations of preservation properties of queries in a given logic
- classical results in (finite) model theory
Homomorphism Preservation Theorem: over arbitrary structures
an FO query Q is preserved under homomorphism iff Q is in $\exists\text{Pos}$

- recently proved over finite structures [Rossman ’08]

$\exists\text{Pos} : \{\exists, \land, \lor\}$-FO (Unions of Conjunctive Queries)
Preservation and syntactic fragments

Homomorphism Preservation Theorem: over arbitrary structures an FO query Q is preserved under homomorphism iff Q is in $\exists \text{Pos}$

- recently proved over finite structures [Rossman ’08]

\[
\exists \text{Pos} : \{\exists, \land, \lor\}-\text{FO} \quad (\text{Unions of Conjunctive Queries})
\]

Lyndon Positivity Theorem [Lyndon ’59]: over arbitrary structures an FO query Q is preserved under onto homomorphism iff Q is in Pos

- fails in the finite [Ajtai-Gurevich 87, Rosen ’95, Stolboushkin ’95]

\[
\text{Pos} : \{\exists, \forall, \land, \lor\}-\text{FO}
\]
Preservation and syntactic fragments

Naïve evaluation works for Q under $[[]]$

Q is “monotone” w.r.t. $[[]]$

Q is preserved under a class of homomorphisms

Preservation theorems:

$(\text{Syntax} \Rightarrow \text{Preservation})$ holds in the finite as well

\Rightarrow classes of queries where naïve evaluation works

Q is expressible in a syntactic fragment
Naïve evaluation and syntactic fragments

Three well known semantics as instances of our framework

Naïve evaluation works under:

- **OWA**
 - Preservation under homomorphism
 - Preserves under $\exists\text{Pos}$
 - Preserves under monotone w.r.t. $\exists\text{Pos}$

- **WCWA**
 - Preservation under onto homomorphism
 - Preserves under Pos

- **CWA**
 - Preservation under “strong onto” homomorphism
 - Preserves under $\text{Pos} + \forall G$
Examples revisited

Q: “There is a manager who has a manager”

\[\exists x, y, z \ (\text{Manager}(x, y) \land \text{Manager}(z, x)) \]

⇒ naïve evaluation works for Q under CWA OWA, WCWA
Examples revisited

Q: “All employees are managers”
\[\forall x \left(\text{Employee}(x) \rightarrow \exists y \ \text{Manager}(x, y) \right) \]

⇒ naïve evaluation works for Q under CWA
(recall: not true under OWA, nor under WCWA)

\[\text{Pos+}\forall G \] extends Pos with a limited form of negation (universal guards)

- a very natural fragment

Naïve evaluation works well beyond \(\exists \text{Pos} \) under other semantics than OWA
Plan

- Introduction
- Incomplete data model
- Querying incomplete data
 - the key to tractability: naïve evaluation
- What makes naïve evaluation work?
 - a general framework
- Applicability of the framework
- Moving forward
Beyond OWA, CWA and WCWA

Semantics of incompleteness have been considered in several contexts:

- programming semantics, logic programming, data exchange,...

[Minker’82, Ohori’90, Rounds’91, Libkin’95, Hernich’11]

- powerset semantics
- minimal semantics
Beyond OWA, CWA and WCWA

Naïve evaluation works under:

Powerset semantics

Preservation under unions of strong onto homomorphisms

Minimal semantics

Preservation under unions of minimal homomorphisms

Naïve evaluation works for \(Q \) under \([[]]\)

\(Q \) is “monotone” w.r.t. \([[]]\)

\(Q \) is preserved under a class of homomorphisms

Preservation theorems

\(Q \) is expressible in a syntactic fragment

\(\exists \mathsf{Pos} \land \forall G^{\mathsf{bool}} \)
Beyond the relational data model

XML: hierarchically structured data

```
<?xml version="1.0" encoding="UTF-8"?>
<library>
  <book title="found. of DBs">
    <author name="Abiteboul" />
    <author name="Hull" />
    <author name="Vianu" />
  </book>
  <book title="...">
    <author name="Vianu" />
    ....
  </book>
</library>
```

modeled as trees with data values associated to nodes
Beyond the relational data model

Incomplete XML based on a form of “tree patterns” [Barcelo-Libkin-Poggi-S. ’10]

- missing data values
- missing nodes
- missing structural information
 - ✓ labels
 - ✓ parent-child, next-sibling relationships
 - ✓ etc.

Tree-pattern-queries: the analog of ∃Pos on trees
Beyond the relational data model

The analog of naïve evaluation works for tree-pattern-queries under OWA on rigid tree patterns [Barcelo-Libkin-Poggi-S. ’10]

- rigidity: essentially avoids structural incompleteness

Our framework explains this result:

- database domain:
 - the set of complete/incomplete trees,
 - OWA semantics: homomorphism-based

- tree pattern queries are preserved under homomorphisms of trees
- rigidity ensures the saturation property
Moving forward

Naïve evaluation on combinations of data models/semantics, e.g

- XML/CWA
- graph-structured data

Query languages beyond FO

- fixed-point logics, fragments of SO, etc.

Naïve evaluation over restricted instances

- Applications: data integration/exchange

Beyond naïve-evaluation

- rewriting of the query/instance (classical in ontology-based query answering)
Thank you!
Real life paradoxes

- SQL adopts a three-valued logic
 - essentially any comparison involving null values evaluates to unknown
- An SQL condition checking $X - Y \neq \emptyset$

  ```sql
  EXISTS ( SELECT X.A FROM X
  WHERE X.A NOT IN ( SELECT Y.A FROM Y ) )
  ```
- $X.A = \{1, 2, 3, \ldots, N\}$ and $Y.A = \{\text{null}\}$, then $X - Y = \emptyset$ no matter what N is!
- That’s how SQL programs work: this is part of the SQL 1999 ANSI Standard
Homomorphisms

Homomorphism $D \rightarrow D'$:

A mapping $h: \text{dom}(D) \rightarrow \text{dom}(D')$ s.t.

$h(D) \subseteq D'$

Onto homomorphism $D \rightarrow D'$:

A homomorphism $h: D \rightarrow D'$ s.t.

$h(\text{dom}(D)) = \text{dom}(D')$

Strong onto homomorphism $D \rightarrow D'$:

A homomorphism $h: D \rightarrow D'$ s.t.

$h(D) = D'$
Homomorphisms

- **Union of strong onto homomorphisms** \(D \rightarrow D' : \bigcup_i h_i (D) = D' \)

- **D-minimal homomorphism** \(h \) on \(D \):
 there exists no \(h' \), preserving all constants preserved by \(h \), s.t. \(h'(D) \subsetneq h(D) \)

- **Union of minimal homomorphisms** \(D \rightarrow D' : \bigcup_i h_i (D) = D' \)

 with \(h_1 \ldots h_n \) \(D \)-minimal and preserving the same constants
Homomorphism-based relational semantics

OWA

\[
\begin{align*}
D & \xrightarrow{v} v(D) \supseteq D' \\
\forall v(D) & \subseteq D' \\
D' & \in \llbracket D \rrbracket_{OWA} \iff \exists v v(D) \subseteq D' \\
\end{align*}
\]

CWA

\[
\begin{align*}
D & \xrightarrow{v} v(D) = D' \\
\forall v(D) & = D' \\
D' & \in \llbracket D \rrbracket_{CWA} \iff \exists v v(D) = D' \\
\end{align*}
\]
Homomorphism-based relational semantics

- Essentially based on **two steps**: 1) valuation of nulls 2) extension of the instance

- Other well-known semantics follow the same paradigm:
Homomorphism-based relational semantics

- Essentially based on two steps: 1) valuation of nulls 2) extension of the instance
- Other well-known semantics follow the same paradigm:

Weak Closed World Assumption [Reiter 77]

\[D' \in \llbracket D \rrbracket_{OWA} \iff \exists v \ v(D) \subseteq D' \]

\[D' \in \llbracket D \rrbracket_{CWA} \iff \exists v \ v(D) = D' \]

\[D' \in \llbracket D \rrbracket_{WCWA} \iff \exists v \ v(D) \subseteq D' \land \text{dom}(D') = \text{dom}(v(D)) \]
Homomorphism-based relational semantics

<table>
<thead>
<tr>
<th>OWA</th>
<th>$D \xrightarrow{v} v(D) \subseteq D'$</th>
<th>$D' \in \llbracket D \rrbracket_{OWA}$ iff $\exists v \ v(D) \subseteq D'$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CWA</td>
<td>$D \xrightarrow{v} v(D) = D'$</td>
<td>$D' \in \llbracket D \rrbracket_{CWA}$ iff $\exists v \ v(D) = D'$</td>
</tr>
<tr>
<td>WCWA</td>
<td>$D \xrightarrow{v} v(D) \subseteq \text{domain}(D')$</td>
<td>$D' \in \llbracket D \rrbracket_{WCWA}$ iff $\exists v \ v(D) \subseteq D' \land \text{dom}(D') = \text{dom}(v(D))$</td>
</tr>
</tbody>
</table>

Can be generalized to arbitrary semantic relations...
Homomorphism-based Relational Semantics

<table>
<thead>
<tr>
<th>OWA</th>
<th>$\mathcal{D} \xrightarrow{v} \mathcal{v}(\mathcal{D}) \subseteq \mathcal{D}'$</th>
<th>$\mathcal{D}' \in \llbracket \mathcal{D} \rrbracket_{\text{OWA}}$ iff $\exists v \ \mathcal{v}(\mathcal{D}) \subseteq \mathcal{D}'$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CWA</td>
<td>$\mathcal{D} \xrightarrow{v} \mathcal{v}(\mathcal{D}) = \mathcal{D}'$</td>
<td>$\mathcal{D}' \in \llbracket \mathcal{D} \rrbracket_{\text{CWA}}$ iff $\exists v \ \mathcal{v}(\mathcal{D}) = \mathcal{D}'$</td>
</tr>
<tr>
<td>WCWA</td>
<td>$\mathcal{D} \xrightarrow{v} \mathcal{v}(\mathcal{D}) \subseteq \text{domain} \mathcal{D}'$</td>
<td>$\mathcal{D}' \in \llbracket \mathcal{D} \rrbracket_{\text{WCWA}}$ iff $\exists v \ \mathcal{v}(\mathcal{D}) \subseteq \mathcal{D}' \land \text{dom}(\mathcal{D}') = \text{dom}(\mathcal{v}(\mathcal{D}))$</td>
</tr>
<tr>
<td>R-based</td>
<td>$\mathcal{D} \xrightarrow{v} \mathcal{v}(\mathcal{D}) \xrightarrow{R} \mathcal{D}'$</td>
<td>$\mathcal{D}' \in \llbracket \mathcal{D} \rrbracket_{R}$ iff $\exists v \ \mathcal{v}(\mathcal{D}) R \mathcal{D}'$</td>
</tr>
</tbody>
</table>

R: reflexive binary relation between complete instances
Monotonicity and preservation

- **R-homomorphism** $D \rightarrow D'$ (D and D' complete):

a mapping h over $\text{dom}(D)$ s.t. $h(D) \text{ R } D'$

- R-homomorphisms “mimic” the semantic mapping:

- except that valuations distinguish constants from nulls

- However, using query genericity:

 If a relational semantics $⟦ ⟧$ is given by R and Q is a generic Boolean query

 Q is monotone w.r.t. $⟦ ⟧$ iff

 Q is preserved under R-homomorphisms
Naïve evaluation and preservation

If a relational semantics is given by \(R \), the saturation property holds:

- Naïve evaluation works for \(Q \) under \(\llbracket \cdot \rrbracket \)
- \(Q \) is “monotone” w.r.t. \(\llbracket \cdot \rrbracket \)
- \(Q \) is preserved under a class of homomorphisms
- \(Q \) belongs to a syntactic fragment

Preservation theorems

Combining the two steps:

If a relational semantics is given by \(R \), the saturation property holds:

\[\llbracket D \rrbracket \]

\[\nu^*(D) \cong D \]

\(\nu^* \): distinct nulls to distinct constants not occurring in \(D \)
Naïve evaluation and preservation

Theorem
If a relational semantics is given by R and Q is a generic Boolean query

Naïve evaluation works for Q iff
Q is preserved under R-homomorphisms

<table>
<thead>
<tr>
<th>R</th>
<th>R-homomorphism</th>
</tr>
</thead>
<tbody>
<tr>
<td>OWA</td>
<td>\subseteq homomorphisms</td>
</tr>
<tr>
<td>CWA</td>
<td>= strong onto homomorphisms (i.e. homomorphisms $D \rightarrow h(D)$)</td>
</tr>
<tr>
<td>WCWA</td>
<td>\subseteq onto homomorphisms</td>
</tr>
</tbody>
</table>

Q is "monotone" w.r.t. $[]$

Q is preserved under a class of homomorphisms

Q belongs to a syntactic fragment

Preservation theorems
Preservation and syntactic fragments of FO

- What about **strong onto homomorphisms**?
 - There is a preservation result in the infinite [Keisler ‘65]
 - complex syntactic restrictions, one binary relation only, problematic to extend...

- A new sufficient condition for preservation, with a good syntax:

Positive fragment with Universal Guards (Pos+∀G)

\[
\varphi := T \mid \bot \mid R(\overline{x}) \mid x = y \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \exists x \varphi \mid \forall x \varphi
\]

\[
\left(\forall \overline{x} \left(G(\overline{x}) \rightarrow \varphi \right) \right)
\]

with

- \(G \) : a relation or equality symbol
- \(\overline{x} \) : a tuple of distinct variables

Pos+∀G formulas are preserved under strong onto homomorphisms
Semantics arising from orderings

- Information ordering of Codd tuples:
 \[\text{if } t[i] \text{ constant } \Rightarrow t'[i] = t[i] \quad \text{then } t' \text{ is “more informative” than } t \]

 \[
 t \begin{array}{c|c|c|c|}
 a & \bot_1 & b & \bot_2 \\
 \end{array} \sqsubseteq \begin{array}{c|c|c|c|}
 a & a & b & \bot_3 \\
 \end{array}
 \]

- Lifting to sets of tuples [Hoare, Plotkin 70s]
 - \(D \sqsubseteq^H D' : \forall t \in D \quad \exists t' \in D' \quad t \sqsubseteq t' \) (Hoare ordering, open-world)
 - \(D \sqsubseteq^P D' : D \sqsubseteq^H D' \quad \text{and} \quad \forall t' \in D' \quad \exists t \in D \quad t \sqsubseteq t' \) (Plotkin ordering)
Semantics arising from orderings

\[D \sqsubseteq^H D' : \forall t \in D \ \exists t' \in D' \ \ t \sqsubseteq t' \] (Hoare ordering, open-world)

\[D \sqsubseteq^P D' : D \sqsubseteq^H D' \text{ and } \forall t \in D' \ \exists t \in D \ \ t \sqsubseteq t' \] (Plotkin ordering)

- Orderings give rise to semantics of Codd databases:
 \[\llbracket D \rrbracket = \{ \text{complete } D' \mid D \sqsubseteq D' \} \]

- Observe that Plotkin semantics is more “open” than CWA:

\(\square \)
• Extend (and generalize) Plotkin semantics to naïve databases

\[
D' \in (D)_{\text{CWA}} \iff \exists \text{ valuations } v_1, \ldots, v_n \ D' = \bigcup_i v_i(D)
\]

• When restricting to Codd databases Powerset CWA coincides with Plotkin

• Gives rise to a whole new class of semantics: \(\bigcup \) is replaced by any suitable relation

\[
R \subseteq 2^C \times C
\]
Naïve evaluation for powerset semantics

- Naïve evaluation ↔ Monotonicity ↔ Preservation continues to hold

- Under the powerset CWA the needed notion is preservation under
 unions of strong onto homomorphisms (i.e. homomorphisms \(D \to \bigcup_{i=1}^{n} h_i(D) \))

- We have similar results for powerset semantics based on arbitrary \(R \)

- An FO fragment preserved under unions of strong onto homomorphisms:
 \[
 \exists \text{Pos}^+ \forall \text{G}^{\text{bool}} : \\
 \exists \text{Pos} \text{ extended with universal guarded sentences } \forall \vec{x} \left(\text{G}(\vec{x}) \to \varphi(\vec{x}) \right)
 \]

Corollary
If \(Q \) is a Boolean query from \(\exists \text{Pos}^+ \forall \text{G}^{\text{bool}} \)
Naïve evaluation works for \(Q \) under \((\cdot)^{\text{CWA}}\)
The \existsPos+\forallG\text{bool} fragment

$Q_1 = \forall x (\text{Employee}(x) \to \exists y \text{Manager}(x, y))$

$Q_2 = \forall x (\text{Employee}(x))$

$Q = \exists x \forall y (\text{Employee}(y) \to \text{Manager}(x, y))$

- Naïve evaluation works for Q_1 and Q_2 under $\langle \cdot \rangle_{CWA} \iff Q_1, Q_2 \in \exists$Pos+$\forall$G\text{bool}$

- Naïve evaluation does not work for Q under the $\langle \cdot \rangle_{CWA} \Rightarrow Q \not\in \exists$Pos+$\forall$G\text{bool}$
Minimal semantics

- A special form of powerset semantics was introduced in the field of deductive databases (GCWA [Minker ’82])
- Later modified and adopted as data exchange semantics (GCWA* [Hernich’11])
- We define it here for arbitrary incomplete instances:

\[D' = \bigcup_i v_i(D) \]

A valuation \(v \) on \(D \) is \(D \)-minimal if there is no valuation \(v' \) s.t. \(v'(D) \subsetneq v(D) \)

Minimal powerset semantics: \(U \) is replaced by any suitable relation \(R \subseteq 2^C \times C \)
Minimal semantics and the core

- Not all valuations are minimal:

\[\bot = a \]
\[\bot' = b \]

\[\bot, \bot' = a \] is minimal

- true also if \(D \) is a core

\[\bot, \bot_1 = a \]
\[\bot_2 = b \]

\[\bot, \bot_1, \bot_2 = a \] is minimal

- but if \(v \) is a minimal valuation \(v(D) = v(\text{core}(D)) \)

- There are other important connections between minimal semantics and the core (later)

Core of \(D \)

substructure \(D' \) of \(D \) such that \(D \rightarrow D' \)
and there is no \(D'' \) s.t. \(D \rightarrow D'' \) (\(\rightarrow \): homomorphism preserving constants)
Minimal semantics and the saturation property

Saturation property for $\langle D, C, \llbracket \cdot \rrbracket, \approx \rangle$:

For all $x \in D$ there exists $y \in \llbracket x \rrbracket$ such that $y \approx x$.

Under the minimal Powerset CWA, the saturation property does not hold.

- All D-minimal images are of the form a and a.
- No union of D-minimal images can be isomorphic to D.
The saturation property revisited

\[\langle \mathcal{D}, C, [\] , \approx \rangle \] has a saturated subdomain if \(\exists S \) with \(C \subseteq S \subseteq \mathcal{D} \) and a function \(X : \mathcal{D} \rightarrow S \) (the representative function) s.t.

- \(\langle S, C, [\] , \approx \rangle \) is saturated
- \([X(x)] = [x] \) for all \(x \in \mathcal{D} \)

Proposition

If a database domain has a saturated subdomain with representative function \(X \) and \(Q \) is a generic Boolean query

Naïve evaluation works for \(Q \) iff
\(Q \) is monotone w.r.t. \([\] \) and \(Q(x) = Q(X(x)) \) for all \(x \)

Lemma: Under the minimal powerset CWA the set of cores is a saturated subdomain with representative function \(\text{core}(\cdot) \)
Monotonicity and preservation for minimal semantics

- Monotonicity under minimal powerset CWA is preservation under the mapping:

\[D \rightarrow U \rightarrow D' \]

- Query genericity used with care:
 - valuations are indistinguishable from homomorphisms, however
 - \(v_1, \ldots v_n \) are minimal w.r.t all other valuations (not all arbitrary homomorphisms)
 - \(v_1, \ldots v_n \) preserve the same elements of \(D \)
Naïve evaluation and preservation for minimal semantics

The right notion of preservation:

- **D-minimal homomorphism** h:

 there exists no h', preserving all constants preserved by h, s.t. $h'(D) \subsetneq h(D)$

- **Unions of minimal homomorphisms**: homomorphisms $D \to \bigcup_{i=1}^{n} h_i(D)$

 with $h_1...h_n$ D-minimal and preserving the same constants

Theorem

If Q is a generic Boolean query

Naïve evaluation works for Q under the minimal powerset CWA iff Q is preserved under unions of minimal homomorphisms and $Q(D) = Q(core(D))$ for every database D

Similar results hold for arbitrary minimal semantics
Preservation and syntactic fragments for minimal semantics

- **Preservation under unions of minimal homomorphisms**: no “tight” syntactic fragment known
- **Remark**: unions of minimal homomorphisms are also unions of strong onto homomorphisms

If Q is a Boolean query from $\exists Pos^+ \forall G^\text{bool}$, under the minimal powerset CWA:
- Naïve evaluation works for Q iff $Q(D) = Q(\text{core}(D))$ for every D
- Naïve evaluation works over cores
Preservation and syntactic fragments for minimal semantics

- Preservation under unions of minimal homomorphisms: no “tight” syntactic fragment known
- Remark: unions of minimal homomorphisms are also unions of strong onto homomorphisms

If Q is a Boolean query from $\exists \text{Pos}^+ \forall G^\text{bool}$, under the minimal powerset CWA:

- Naïve evaluation works for Q iff $Q(D) = Q(\text{core}(D))$ for every D
- Naïve evaluation works over cores

$Q = \forall x, y (\text{Manager}(x, y) \rightarrow x = y)$
$Q(D) = \text{false}$ $\text{cert}(Q, D) = \text{true}$

$Q \in \exists \text{Pos}^+ \forall G^\text{bool}$ but naïve evaluation does not work

$Q(D) \neq Q(\text{core}(D))$
Non-Boolean queries

All results can be lifted to non-boolean relational queries. For a k-ary query Q:

- Define a new database domain whose elements are pairs \((D, t)\)
 - \(D\): a relational database
 - \(t\): a k-tuple of constants

- Define a boolean query \(Q^*\) s.t. \(Q^*(D, t) = \text{true} \iff t \in Q(D)\)

- Apply previous results to \(Q^*\) and the new database domain ⇒ derive results for \(Q\) over the original relational database domain

For k-ary FO queries, \(k \geq 0\)

<table>
<thead>
<tr>
<th>Semantics</th>
<th>Naïve evaluation works for</th>
</tr>
</thead>
<tbody>
<tr>
<td>OWA</td>
<td>(\exists Pos)</td>
</tr>
<tr>
<td>WCWA</td>
<td>(Pos)</td>
</tr>
<tr>
<td>CWA</td>
<td>(Pos + \forall G)</td>
</tr>
<tr>
<td>Powerset CWA</td>
<td>(\exists Pos + \forall G^{\text{bool}})</td>
</tr>
<tr>
<td>Min Powerset CWA</td>
<td>(\exists Pos + \forall G^{\text{bool}} \iff Q(D) = Q(\text{core}(D)))</td>
</tr>
</tbody>
</table>