Algorithms for parallel graph exploration

Dominik Pająk
University of Cambridge, UK

LaBRI 3 February 2015
We enter an **unknown** cave.

Initially – no knowledge about the cave.
We enter an **unknown** cave.

Initially – no knowledge about the cave.

When we walk in the tunnels we learn about its topology.
We enter an **unknown** cave.
Initially – no knowledge about the cave.
When we walk in the tunnels we learn about its topology.
We explore more – we learn more.
We enter an **unknown** cave.

Initially – no knowledge about the cave.

When we walk in the tunnels we learn about its topology.

We explore more – we learn more.

We want to explore the whole cave.
Parallel exploration

Can we explore the environment efficiently (quickly) if we have multiple walkers (agents) walking in parallel?
Parallel exploration

Can we explore the environment efficiently (quickly) if we have multiple walkers (agents) walking in parallel?

- We can explore multiple tunnels at the same time.
We can model cave as a graph:

- n – number of nodes.
- m – number of edges (tunnels).
- D – distance from the start to the furthest node.

Team of agents

- k – number of agents. All agents start in node r.
- Agents are moving in parallel.
- Traversal of one edge takes one time step. If we want to model a longer tunnel we can use multiple edges.

Lower bound

- Time D is needed because some walker has to go to the furthest node.
We can model cave as a graph:

- n – number of nodes.
- m – number of edges (tunnels).
- D – distance from the start to the furthest node.

Team of agents

- k – number of agents. All agents start in node r.
- Agents are moving in parallel.
- Traversal of one edge takes one time step. If we want to model a longer tunnel we can use multiple edges.

Lower bound

Time D is needed because some walker has to go to the furthest node.

Goal

We can use many agents but we want to explore in time close to D.
Naïve approaches

i-th level of the graph – all nodes at distance i from r.

Naïve approach 1: Flooding

Straightforward algorithm to explore in time D using $\Theta(\Delta^D)$ agents (Δ - maximum degree):

In i-th step each node at level i splits evenly all its agents to its neighbours at level $i + 1$.

$D = 4$

![Graph diagram showing Δ^4 and $D = 4$](image)
Naïve approaches

i-th level of the graph – all nodes at distance i from r.

Naïve approach 1: Flooding

Straightforward algorithm to explore in time D using $\Theta(\Delta^D)$ agents (Δ - maximum degree):

In i-th step each node at level i splits evenly all its agents to its neighbours at level $i + 1$.

$D = 4$
Naïve approaches

i-th level of the graph – all nodes at distance i from r.

Naïve approach 1: Flooding

Straightforward algorithm to explore in time D using $\Theta(\Delta^D)$ agents (Δ - maximum degree):

In i-th step each node at level i splits evenly all its agents to its neighbours at level $i + 1$.

$$D = 4$$
Naïve approaches

i-th level of the graph – all nodes at distance i from r.

Naïve approach 1: Flooding

Straightforward algorithm to explore in time D using $\Theta(\Delta^D)$ agents (Δ - maximum degree):
In i-th step each node at level i splits evenly all its agents to its neighbours at level $i + 1$.

$D = 4$
Naïve approaches

i-th level of the graph – all nodes at distance i from r.

Naïve approach 1: Flooding

Straightforward algorithm to explore in time D using $\Theta(\Delta^D)$ agents (Δ - maximum degree):

In i-th step each node at level i splits evenly all its agents to its neighbours at level $i + 1$.

$D = 4$
Unrealistic assumptions

- Assume that the walkers can communicate. Let's say that they have a common knowledge about the progress of exploration.
- Assume that the graph is a tree (no cycles).
Smart flooding

Unrealistic assumptions

- Assume that the walkers can communicate. Let's say that they have a common knowledge about the progress of exploration.
- Assume that the graph is a tree (no cycles).

Algorithm

- Release the walkers in groups from the root.
- At each node split the agents proportionally to the number of open unexplored tunnels.
Smart flooding

Unrealistic assumptions

- Assume that the walkers can communicate. Let’s say that they have a common knowledge about the progress of exploration.
- Assume that the graph is a tree (no cycles).

Algorithm

- Release the walkers in groups from the root.
- At each node split the agents proportionally to the number of open unexplored tunnels.
Theorem

The algorithm explores in time $O(D)$, using Dn^c agents (for any $c > 1$).

- Dn^c is still a lot of agents but at least it is polynomial in n.

Smart flooding
The algorithm explores in time $O(D)$, using Dn^c agents (for any $c > 1$).

- Dn^c is still a lot of agents but at least it is polynomial in n.
- Both unrealistic assumptions can be dropped:
 - We can explore any graph using smart flooding.
 - We can do it using only local communication.
Other ways to achieve parallelization: Random walks

Random walks
- Multiple independent random walks starting from the same position.
Other ways to achieve parallelization: Random walks

Random walks

- Multiple independent random walks starting from the same position.
- Easy to implement: no memory needed.
- It is still an open problem if any parallelization is guaranteed.
- Poor parallelization on some graphs (e.g., path).
Other ways to achieve parallelization: Random walks

Random walks
- Multiple independent random walks starting from the same position.
- Easy to implement: no memory needed.
- It is still an open problem if any parallelization is guaranteed.
- Poor parallelization on some graphs (e.g., path).

Grids
- $O(D^2)$ is possible using polynomial number of agents.
- To get time $O(D)$, we need exponential.
Other ways to achieve parallelization: Fair strategies

Fair strategies

- Each node is sending (cumulatively over time) the same \((+/-1)\) number of agents in every direction.

- Similar to random walks on many graphs.
- \(\log k\)-times faster exploration is guaranteed.
- Similarly as for the random walks we need exponential number of agents to explore grids in \(O(D)\).
Conclusions

- Smart flooding explores any graph in time $O(D)$ using polynomial number of agents.
- Random walks and fair strategies can also be used for parallel exploration but to explore all graphs in $O(D)$ exponential number of agents is needed.
Thank You!