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Reachability/Invariance/Approximation in Markov Chains

M: Markov chain over states s1, . . . , sk

Is it the case that, starting in state s1, ultimately I am in state
sk with probability at least 1/2 ?

(1, 0, 0, 0) ·M =
(0, 0.5, 0.2, 0.3) ·M =

(0.16, 0, 0.5, 0.34) ·M =
(0.318, 0.08, 0.032, 0.57) ·M =

(0.13, 0.159, 0.1436, 0.5374) ·M =
(0.18528, 0.065, 0.185, 0.51472) ·M =

(0.205444, 0.09264, 0.102056, 0.50386) ·M =
(0.171, 0.102722, 0.133729, 0.500149) ·M =

(0.185374, 0.0855, 0.136922, 0.500004)
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Reachability/Invariance/Approximation in Markov Chains

M: Markov chain over states s1, . . . , sk

Is it the case that, starting in state s1, ultimately I am in state
sk with probability at least 1/2 ?

Markov Chain Problem

Instance: 〈 stochastic matrix M; r ∈ (0, 1] 〉

Question: Does ∃T s.t. ∀n ≥ T , (1, 0, . . . , 0) ·Mn ·


0
...
0
1

 ≥ r ?



Positivity and Zeros of Linear Recurrence Sequences

u0 = 0, u1 = 1
un+2 = un+1 + un

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . . .

Positivity Problem

Instance: A linear recurrence sequence 〈un〉
Question: Is it the case that ∀n, un ≥ 0 ?

Skolem Problem

Instance: A linear recurrence sequence 〈un〉
Question: Does ∃n such that un = 0 ?
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Fibonacci: A Closer Look

u0 = 0, u1 = 1
un+2 = un+1 + un

The Fibonacci sequence has order 2

Its characteristic polynomial is p(x) = x2 − x − 1

The characteristic roots are λ1 = 1+
√
5

2 and λ2 = 1−
√
5

2

No repeated roots ⇒ Fibonacci sequence is simple

un =
1√
5

(
1 +
√

5

2

)n

− 1√
5

(
1−
√

5

2

)n

= c1λ
n
1 + c2λ

n
2

un =
(

1 0
)( 1 1

1 0

)n (
0
1

)
= vTMnw

Fibonacci has order 2 ⇐⇒ matrix M has dimension 2×2

Fibonacci sequence is simple ⇐⇒ M is diagonalisable
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Linear Recurrence Sequences

Numbers 〈u0, u1, u2, . . .〉 form a linear recurrence sequence
if there exist k and constants a1, . . . , ak , such that

∀n ≥ 0, un+k = a1un+k−1 + a2un+k−2 + . . .+ akun

k is the order of the sequence
Its characteristic polynomial is

p(x) = xk − a1xk−1 − a2xk−2 − . . .− ak

The linear recurrence sequence is simple if its characteristic
polynomial has no repeated roots
Let λ1, λ2, . . . , λm ∈ C be the characteristic roots. There
exist polynomials p1(x), p2(x), . . . , pm(x) ∈ C[x ] such that

un = p1(n)λn1 + p2(n)λn2 + . . .+ pm(n)λnm

In general λ1, . . . , λk and all coefficients of p1(x), . . . , pm(x)
are algebraic numbers
If the linear recurrence sequence is simple then the
polynomials p1(x), . . . , pm(x) are all constant
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Decision Problems for Linear Recurrence Sequences

Let 〈un〉 be a linear recurrence sequence

Skolem Problem

Does ∃n such that un = 0 ?

Positivity Problem

Is it the case that ∀n, un ≥ 0 ?

Ultimate Positivity Problem

Does ∃T such that, ∀n ≥ T , un ≥ 0 ?
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Related Work and Applications

Theoretical biology

Analysis of L-systems
Population dynamics

Software verification

Termination of linear programs

Probabilistic model checking

Reachability, invariance, and approximation in Markov chains
Stochastic logics

Quantum computing

Threshold problems for quantum automata

Economics

Combinatorics

Discrete linear dynamical systems

Statistical physics

. . .



The Skolem Problem

Skolem Problem

Does ∃n such that un = 0 ?

Open for about 80 years!

“It is faintly outrageous that this
problem is still open; it is saying that we
do not know how to decide the Halting

Problem even for ‘linear’ automata!”

Terence Tao

“. . . a mathematical embarrassment . . . ”

Richard Lipton
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The Skolem-Mahler-Lech Theorem

Theorem (Skolem 1934; Mahler 1935, 1956; Lech 1953)

The set of zeros of a linear recurrence sequence is semilinear:

{n : un = 0} = F ∪ A1 ∪ . . . ∪ A`

where F is finite and each Ai is a full arithmetic progression.

All known proofs make essential use of p-adic techniques

Theorem (Berstel and Mignotte 1976)

In Skolem-Mahler-Lech, the infinite part (arithmetic progressions
A1, . . . , A`) is fully constructive.
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The Skolem Problem at Low Orders

Skolem Problem

Does ∃n such that un = 0 ?

Let un be a linear recurrence sequence of fixed order

Theorem (folklore)

For orders 1 and 2, Skolem is decidable.

Theorem (Mignotte, Shorey, Tijdeman 1984; Vereshchagin 1985)

For orders 3 and 4, Skolem is decidable.

Critical ingredient is Baker’s theorem for
linear forms in logarithms, which earned
Baker the Fields Medal in 1970.
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Skolem Problem

Does ∃n such that un = 0 ?

Let un be a linear recurrence sequence of fixed order

Theorem (folklore)

For orders 1 and 2, Skolem is decidable.

Theorem (Mignotte, Shorey, Tijdeman 1984; Vereshchagin 1985)

For orders 3 and 4, Skolem is decidable.

Decidability for order 5 was announced in 2005 by four Finnish
mathematicians in a technical report (as yet unpublished). Their
proof appears to have a serious gap.



The Positivity and Ultimate Positivity Problems

Positivity and Ultimate Positivity open since at least 1970s

“In our estimation, these will be very difficult problems.”

Matti Soittola

Theorem (folklore)

Decidability of Positivity ⇒ decidability of Skolem.
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The Positivity and Ultimate Positivity Problems

Theorem (Burke, Webb 1981)

For order 2, Ultimate Positivity is decidable.

Theorem (Nagasaka, Shiue 1990)

For order 3 with repeated roots, Ultimate Positivity is decidable.

Theorem (Halava, Harju, Hirvensalo 2006)

For order 2, Positivity is decidable.

Theorem (Laohakosol and Tangsupphathawat 2009)

For order 3, Positivity and Ultimate Positivity are decidable.

In Colloquium Mathematicum 128:1 (2012), Tangsupphathawat,
Punnim, and Laohakosol claimed decidability of Positivity and
Ultimate Positivity for order 4 (and noted being stuck for order 5).
Unfortunately, their proof contains a major error.
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Some Recent Results (I)

Theorem

Positivity is decidable for order 5 or less.

The complexity is in coNPPPPPPP

(⊆ PSPACE).

Theorem

Ultimate Positivity is decidable for order 5 or less.
The complexity is in P.

Theorem

At order 6, for both Positivity and Ultimate Positivity,
proof of decidability would entail major breakthroughs in analytic
number theory (Diophantine approximation of transcendental
numbers).
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Some Recent Results (II)

Theorem

For simple linear recurrence sequences of order 9 or less,
Positivity is decidable.

The complexity is in coNPPPPPPP

(⊆ PSPACE).

We don’t know what happens at order 10. But:

Proposition

Decidability of Positivity for simple linear recurrence sequences of
order 14 ⇒ decidability of general Skolem Problem at order 5.

Theorem

For simple linear recurrence sequences,
Ultimate Positivity is decidable for all orders.

For each fixed order k, complexity is in P (but depends on k).

In the general case, complexity is in PSPACE and co∃R-hard.
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Known Unknowns

“There are things that we know we don’t know. . . ”

Donald Rumsfeld



Diophantine Approximation

How well can one approximate a real number x with rationals?∣∣∣∣x − p

q

∣∣∣∣

Theorem (Dirichlet 1842)

There are infinitely many integers p, q such that

∣∣∣∣x − p

q

∣∣∣∣ < 1

q2
.

Theorem (Hurwitz 1891)

There are infinitely many integers p, q such that

∣∣∣∣x − p

q

∣∣∣∣ < 1√
5q2

.

Moreover, 1√
5

is the best possible constant that will work for all

real numbers x.
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Diophantine Approximation

Definition

Let x ∈ R. The Lagrange constant L∞(x) is:

L∞(x) = inf

{
c :

∣∣∣∣x − p

q

∣∣∣∣ < c

q2
has infinitely many solutions

}
.

L∞(x) is closely related to the continued fraction
expansion of x

Almost all reals x have L∞(x) = 0 [Khinchin 1926]

However if x is a real algebraic number of degree 2,
L∞(x) 6= 0 [Euler, Lagrange]

All transcendental numbers x have 0 ≤ L∞(x) ≤ 1/3
[Markov 1879]

Almost nothing else is known about any specific
irrational number!
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Hardness

Let T = {θ ∈ (0, 1) : e2πiθ ∈ Q(i)} \ {14 ,
1
2 ,

3
4}

e
2 θπi

2 πθ

a+bi =

T is a countable set of transcendental numbers

Theorem

Suppose that Ultimate Positivity is decidable for integer linear
recurrence sequences of order 6. Then for any θ ∈ T ,
L∞(θ) is computable.
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Positivity of Simple LRS: Algorithm Sketch

Theorem

For simple linear recurrence sequences:

Ultimate Positivity is decidable for all orders.

Positivity is decidable for orders 9 or less.

Input: a simple linear recurrence sequence 〈un〉∞n=0 of order ≤ 9

1 Decide if 〈un〉∞n=0 is ultimately positive.
If it isn’t, 〈un〉∞n=0 is not positive. Otherwise:

2 Compute a threshold T such that 〈un〉∞n=T is positive.

3 Check individually whether u0 ≥ 0, u1 ≥ 0, . . . , uT−1 ≥ 0.
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Lower Bounds in Diophantine Approximation

Theorem (Dirichlet 1842)

There are infinitely many integers p, q such that

∣∣∣∣x − p

q

∣∣∣∣ < 1

q2
.

Theorem (Roth 1955)

Let x ∈ R be algebraic. Then for any ε > 0
there are finitely many integers p, q such that∣∣∣∣x − p

q

∣∣∣∣ < 1

q2+ε
.

Non-effective!

Subsequent vast higher-dimensional generalisations:

Schmidt’s Subspace Theorem (1965–1972)
Schlickewei’s p-adic Subspace Theorem (1977)

⇒ Evertse, van der Poorten, and Schlickewei’s
⇒ lower bounds on sums of S-units (1984–1985)
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Lower Bounds on Sums of S-Units: A Simple Example

How small can the following expression get?

|3x − 7y |

where x , y ∈ N

For all ε > 0, if x and y are ‘large enough’, then

|3x − 7y | > M1−ε

where M = max{3x , 7y}

Constructive proof requires Baker’s Theorem (!)
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Lower Bounds on Sums of S-Units: A Simple Example

How about
| 3x ± 7y ± 13z |

where x , y , z ∈ N

For all ε > 0, if x , y , and z are ‘large enough’, then

| 3x ± 7y ± 13z | > M1−ε

where M = max{3x , 7y , 13z}

No constructive proof is known !
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Lower Bounds on Sums of S-Units and
Simple Linear Recurrence Sequences

We use complex algebraic-integer extensions of such results to
study expressions of the form:

un = c1λ
n
1 + c2λ

n
2 + . . .+ ckλ

n
k + r(n)

f (z1, z2, . . . , zk) = c1z1 + c2z2 + . . .+ ckzk
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Main Tools and Techniques

Algebraic and analytic number theory, Diophantine geometry

p-adic techniques
Baker’s theorem on linear forms in logarithms
Kronecker’s theorem on simultaneous Diophantine
approximation
Masser’s results on multiplicative relationships
among algebraic numbers
Schmidt’s Subspace theorem and
Schlickewei’s p-adic extension
Sums of S-units techniques
Gelfond-Schneider theorem
Other Diophantine geometry and approximation techniques

Real algebraic geometry
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