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What is Semidefinite Programming?

m Linear Programming (LP):

. T
mm ¢ zZ
z

st. Az>d .

m Linear cost ¢

Polyhedron

m Linear inequalities “}; A z; > d;”
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What is Semidefinite Programming?

m Semidefinite Programming (SDP):
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Applications of SDP

m Combinatorial optimization

m Control theory

m Matrix completion

m Unique Games Conjecture (Khot '02) :
“A single concrete algorithm provides optimal guarantees
among all efficient algorithms for a large class of
computational problems.”
(Barak and Steurer survey at ICM'14)

m Solving polynomial optimization (Lasserre ‘01)
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SDP for Polynomial Optimization

Prove polynomial inequalities with SDP:

pla,b) :=a*> —2ab+1* >0 .

mnazspon) = o 0) (2 7) (7).
2 3
N——— —

=0

m Find zs.t. 4> — 2ab + b* = z1a> + 2z0ab + 230> (Az = d)

2@\ _ (1 0), (0 1)y (00 (00
z z) \0o 0o/t T"\1 0/ 0o 1/)®7\0 0

—— ——— ——— ——
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SDP for Polynomial Optimization

m Choose a cost ce.g. (1,0,1) and solve:
. T
min c¢ z

s.t. ZF,‘ZZ‘%FO , Az=d.
i

m Solution <Z] Zz) = < 1 _1> =0 (eigenvalues 0 and 1)

Zy Z3 -1 1
ma?—2ab+1b* = (a b) (_11 _11) (Z) = (a—b)*.
———
=0

m Solving SDP = Finding SUMS OF SQUARES certificates
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SDP for Polynomial Optimization

General case:
m Semialgebraicset S := {x € R": g1(x) > 0,...,gm(x) >0}

m p* := minp(x): NP hard

XE€S

m Sums of squares (SOS) Z[x] (e.g. (x; — x2)?)

s Q(S):= {(To(x) + X 0i(x)gi(x), with o) € Z[x] }

m Fix the degree 2k of sums of squares

Qk(S) == Q(S) NRy[x]
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SDP for Polynomial Optimization

m Hierarchy of SDP relaxations:
A i= sup{/\ p—A€ Qk(S)}
A

m Convergence guarantees A, 1 p* [Lasserre 01]
m Can be computed with SDP solvers (CSDP, SDPA)

m Extension to semialgebraic functions r(x) = p(x)/+/q(x)
[Lasserre-Putinar 10]
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SDP for Nonlinear (Formal) Optimization



From Oranges Stack...

Kepler Conjecture (1611):

T

The maximal density of sphere packings in 3D-space is NiE

Face-centered cubic Packing  Hexagonal Compact Packing
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...to Flyspeck Nonlinear Inequalities

m The proof of T. Hales (1998) contains mathematical and
computational parts

Computation: check thousands of nonlinear inequalities

Flyspeck [Hales 06]: Formal Proof of Kepler Conjecture
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...to Flyspeck Nonlinear Inequalities

m The proof of T. Hales (1998) contains mathematical and
computational parts

Computation: check thousands of nonlinear inequalities

Flyspeck [Hales 06]: Formal Proof of Kepler Conjecture

Project Completion on 10 August by the Flyspeck team!!
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A “Simple” Example

In the computational part:
m Multivariate Polynomials:
Ax = x1x4(—x1 + X2 + X3 — X4 + X5+ X6) + X2x5(x1 — X2 + X3 +
Xg4 — X5+ Xg) + X3X6 (X1 + X2 — X3 + Xg + X5 — Xg) — X2 (X34 +
X1Xg) — X5(X1x3 + X4X6)
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A “Simple” Example

In the computational part:
m Semialgebraic functions: composition of polynomials with
| : |/ \//+/ —, %, //Sup/inf/' ..

p(x) 1= dsAX g(x) := 4x1Ax

r(x) = p()/vq(x)

I(x) = =7 +1.6294 = 02213 (/37 + /%3 + /X5 + /%5 — 8.0) +
0.913 (/%4 — 2.52) + 0.728 (/77 — 2.0)
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A “Simple” Example

In the computational part:

m Transcendental functions 7: composition of semialgebraic
functions with arctan, exp, sin, +, —, X, ...
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A “Simple” Example

In the computational part:
m Feasible set S := [4,6.3504]> x [6.3504, 8] x [4,6.3504]>

Lemmaggnoee9028 from Flyspeck:

Vx € S,arctan( Pk ) +1(x) >0

Va(x)
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New Framework (in my PhD thesis)

m Certificates for Nonlinear Optimization using SDP and:

m Maxplus approximation (Optimal Control)

m Nonlinear templates (Static Analysis)

m Verification of these certificates inside COQ:
p=o0y+Y;og = Vx€S, p(x)=0.
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Contribution: Publications and Software

@ V.M., X. Allamigeon, S. Gaubert and B. Werner.
Formal Proofs for Nonlinear Optimization,
arxiv:1404.7282, 2015. Journal of Formalized Reasoning.

Software Implementation NLCertify:

m https://forge.ocamlcore.org/projects/nl-certify/
m 15 000 lines of OCAML code

' 4000 lines of COQ code

@ V. M. NLCertify: A Tool for Formal Nonlinear Optimization,
arxiv:1405.5668, 2014. ICMS.
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SDP for Real Algebraic Geometry



Projections of Semialgebraic Sets

m Semialgebraicset S := {x € R": g1(x) > 0,...,g(x) > 0}

m A polynomial map f : R* — R",
x = f(x) = (fi(x), - (X))

m F:=f(S) C B, with B C R" a box or a ball

m Tractable approximations of F ?
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Projections of Semialgebraic Sets

g1 i=—(x1—2)%/2—x,+25, fri=(x1+x2 =752 /44 (—x1 + 2 +3)%,
o= —X] —xp +8(—x; +xp +0.65)2 +3.85, far=(n _1)2/4+ (x2 _4)2/4 .
S:={xeR?:g1(x) >0, g(x) >0} .

6
4
"
2
g nggr- ;
R A
R Bt D Sy :."“’-“'7'5* W
o R R 0
0 3 26 39 0 0, W 60
C1

S F=f(S)
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Projections of Semialgebraic Sets

m Includes important special cases:

m = 1: polynomial optimization

F C [minf(x), maxf(x)]

Approximate projections of S when f(x) := (x1,...,%m)
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Existential Quantifier Elimination

Another point of view:

F={yeB:3IxeSstf(x)=y},
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Existential Quantifier Elimination

Another point of view:

F={yecB:3IxeSst |y—f(x)|3 =0},
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Existential Quantifier Elimination

Another point of view:
F={ycB:3xeSst h(xy) >0},

with
he(xy) == =lly = f(¥)|5 -

Define h(y) := sup, g i (x,y)
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Existential Quantifier Elimination

Hierarchy of SDP:

inf{/B(q—h)dy:q—hf € QS xB))} .

q

Existential QE: approximate F as closely as desired [Lasserre 14]

Fr:={y € B:qy) 20},

for some polynomials g, € Ryly].
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Existential Quantifier Elimination

Assuming that S has non empty interior,

lim vol(F;\F) =0 .
k—o0
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Approximating Projections

f(x) = (x1,x2): projection on IR? of the semialgebraic set

S:={xeR:x|3<1,1/4— (x1 +1/2)* =15 >0,
1/9 — (x1 —1/2)* —x5 > 0}
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Approximating Pareto Curves

g11=—(x1—273/2-x+25, fii= (@43 =75 /44 (-x + 3 +3)

g2 1= —x) — X +8(—x1 + ¥ +0.65)% +-3.85 , fy o= (x1 —1)2 /4 + (xp —4)2/4 .
Si={xeR2:g1(x) >0, g(x) >0} .
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Approximating Pareto Curves
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Approximating Pareto Curves
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Approximating Pareto Curves

“Zoom” on the region which is hard to approximate:
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Approximating Pareto Curves

“Zoom” on the region which is hard to approximate:
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Contributions

@ V. Magron, D. Henrion, J.B. Lasserre. Semidefinite
approximations of projections and polynomial images of
semialgebraic sets. 00:2014.10.4606, October 2014.
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SDP for Program Verification



Polynomial Programs (One-loop with Guards)

mr,s,T,T° € R[X]

m xg € Xp, with Xy semialgebraic set

X = X0;
while (r(x) <0){
if (s(x) <0{

x =Ti(x);
}

elsed{
x =T(x);
}
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Polynomial Inductive Invariants

Sufficient condition to get inductive invariant:

® := min
7€ER[x]

s.t.

f;zq(X)

g—qgoT >0 ,ifs(x) <Oandr(x) <0,
g—qoT* >0 ,ifs(x) >0andr(x) <0,
g—x =0

B U XiC{xeR":q(x) <a} C{xeR":«x(x) <a}

kelN
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Bounding Polynomial Invariants

Sufficient condition to get bounding inductive invariant:

® := min
7€R[x]

s.t.

sup q(x)

x€Xp

g—goT >0 ,ifs(x) <0andr(x) <0
g—qoT* >0 ,ifs(x) >0and r(x) <0
g—|-13>0.

B U X C{xeR :g(x) <a} C{xcR":|x|?<a}

kelN
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Bounds for | J;.p Xk

Xo :=[09,1.1] x [0,02] r(x):=1 s(x):=1—|x|?

; 1 2 3 3
Tl(x) = (x% + xg,xi) +x%) Te(x) = (Ex% —+ gxgl __x:% + Ex%

5
x(x) = [Ix]?

-1 -05 0 0.5 1

Degree 6
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Bounds for | J;.p Xk

=[0.9,1.1] x [0,0.2] r(x):=1 s(x):=1—|x|?
1 2 3 3 3 2

T'(x) = (G +x3,09 +23) T°(x):= (5 M + 5 2,—5x1 + EXZ)
i(x) = [|x[>
0.5
0 - .
-
Degree 8
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Bounds for | J;.p Xk

=[0.9,1.1] x [0,0.2] r(x):=1 s(x):=1—|x|?
1 2 3 3 3 2

T'(x) = (G +x3,09 +23) T°(x):= (5 M + 5 X3 5t EXZ)
x(x) = [[x||?
0.5
0 - .
o
Degree 10
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Does Jicn Xk avoid unsafe region?

Xo:=[05,07 r(x):=1 s(x):=1—|x?

; 1 2 3 3
T'(x) = (d + 25,0 +23) T(x) = (531 + 233, — X + 153
1 1 1
K(x) = 1 (1 + 5)2 — (2 + 5)2

-0.5

Degree 6

0 0.5 1
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Victor Magron

Does [Jicn Xk avoid unsafe region?

Xo:=[05,07 r(x):=1 s(x):=1—|x?

: 1, 2,4
T'(x) = (A +x,0 +x) T(x) = (531 + 52—
1 1, 1.,

K(X)ZZ—(XH‘E) —(x2+§)

Degree 8
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Does [Jicn Xk avoid unsafe region?

Xo:=[05,07 r(x):=1 s(x):=1—|x?

: 1, 2,4

T'(x) = (A +x,0 +x) T(x) = (531 + 52—
1 1 1.,

K(x) = 1 (1 + 5)2 — (%2 + E)
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Ongoing: Bounding Floating-point Errors

m Exact:
f(X) = X1X2 + X3X4

m Floating-point:
F(x,€) = [x1x2(1 + €1) +x3x4(1 + €2)] (1 + €3)

mxeS, |e€|<277 p=24(single)or 53 (double)
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Ongoing: Bounding Floating-point Errors

Input: exact f(x), floating-point f(x,€),x € S, | € |< 277
Output: Bounds for f — f

1: Error r(x,€) := f(x) — f(x, €) Zr,,‘
2: Decompose r(x,€) = I(x,€) + h(x,€), | linear in €
3: Bound &(x, €) with interval arithmetic

4: Bound /(x, €) with SPARSE SUMS OF SQUARES
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Conclusion



Conclusion

SDP is powerful to handle NONLINEARITY:

m Optimize nonlinear (transcendental) functions

m Approximate Pareto Curves, projections of semialgebraic
sets

® Analyze nonlinear programs
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Conclusion

Further research:

m Alternative polynomial bounds using geometric
programming (T. de Wolff, S. Iliman)

m Mixed linear/SDP certificates (trade-off CPU/precision)
m More program verification

m Flyspeck nonlinear inequalities : decrease current
verification time (5000 CPU hours!!)
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End

Thank you for your attention!

cas.ee.ic.ac.uk/people/vmagron


cas.ee.ic.ac.uk/people/vmagron

	Introduction
	What is Semidefinite Programming?
	Applications of SDP
	SDP for Polynomial Optimization

	SDP for Nonlinear (Formal) Optimization
	From Oranges Stack...
	...to Flyspeck Nonlinear Inequalities
	A ``Simple'' Example
	Contribution: Publications and Software

	SDP for Real Algebraic Geometry
	Projections of Semialgebraic Sets
	Existential Quantifier Elimination
	Approximating Projections
	Approximating Pareto Curves
	Contributions

	SDP for Program Verification
	Polynomial Programs (One-loop with Guards)
	Polynomial Inductive Invariants
	Bounding Polynomial Invariants
	Bounds for 
	Does 
	Ongoing: Bounding Floating-point Errors

	Conclusion

