Strong edge-colouring of planar and bipartite graphs

<u>Julien Bensmail</u>^a, Ararat Harutyunyan^a, Hervé Hocquard^b, Aurélie Lagoutte^a and Petru Valicov^c

a. LIP – ENS de Lyon – France
b. LaBRI – Université de Bordeaux – France
c. LIF – Université d'Aix-Marseille – France

GDR IM February 2nd, 2015

- G: undirected simple graph
- c: edge-colouring of G

Definition: strong edge-colouring

- G: undirected simple graph
- c: edge-colouring of G

Definition: strong edge-colouring

- G: undirected simple graph
- c: edge-colouring of G

Definition: strong edge-colouring

- G: undirected simple graph
- c: edge-colouring of G

Definition: strong edge-colouring

- G: undirected simple graph
- c: edge-colouring of G

Definition: strong edge-colouring

Strong chromatic index

 Δ : maximum degree of an explicit graph

Definition: strong chromatic index

The least number of colours in a strong edge-colouring of G is the *strong* chromatic index of G, denoted $\chi'_s(G)$.

Strong chromatic index

 Δ : maximum degree of an explicit graph

Definition: strong chromatic index

The least number of colours in a strong edge-colouring of G is the strong chromatic index of G, denoted $\chi'_s(G)$.

Brooks-like argument: $\chi'_s(G) \leq 2\Delta^2 - 2\Delta + 1 \ (\approx 2\Delta^2)$

optimality of $2\Delta^2$?

Conjecture [Erdős, Nešetřil – 1989]

We have
$$\chi'_s(G) \leq \begin{cases} rac{5}{4}\Delta^2 \text{ for } \Delta \text{ even, and} \\ rac{1}{4}(5\Delta^2 - 2\Delta + 1) \text{ otherwise} \end{cases}$$

optimality of $2\Delta^2$?

Conjecture [Erdős, Nešetřil – 1989]
We have
$$\chi'_s(G) \leq \begin{cases} \frac{5}{4}\Delta^2 \text{ for } \Delta \text{ even, and} \\ \frac{1}{4}(5\Delta^2 - 2\Delta + 1) \text{ otherwise.} \end{cases}$$

Facts:

• reached for blown-up C_5 's only [Chung, Gyárfás, Tuza, Trotter – 1990]

optimality of $2\Delta^2$?

Conjecture [Erdős, Nešetřil – 1989]

We have
$$\chi'_s(G) \leq \begin{cases} rac{5}{4}\Delta^2 ext{ for } \Delta ext{ even, and} \\ rac{1}{4}(5\Delta^2 - 2\Delta + 1) ext{ otherwise} \end{cases}$$

Facts:

- reached for blown-up C₅'s only [Chung, Gyárfás, Tuza, Trotter 1990]
- verified for $\Delta = 3$ [Andersen 1992]

optimality of $2\Delta^2$?

Conjecture [Erdős, Nešetřil – 1989]

We have
$$\chi'_s(G) \leq \begin{cases} rac{5}{4}\Delta^2 \mbox{ for } \Delta \mbox{ even, and} \\ rac{1}{4}(5\Delta^2 - 2\Delta + 1) \mbox{ otherwise} \end{cases}$$

Facts:

- reached for blown-up C₅'s only [Chung, Gyárfás, Tuza, Trotter 1990]
- verified for $\Delta = 3$ [Andersen 1992]
- for $\Delta =$ 4, we know $\chi_s'(G) \leq$ 22 [Cranston 2006]

optimality of $2\Delta^2$?

Conjecture [Erdős, Nešetřil – 1989]

We have
$$\chi'_{\mathfrak{s}}(\mathcal{G}) \leq \begin{cases} rac{5}{4}\Delta^2 \text{ for } \Delta \text{ even, and} \\ rac{1}{4}(5\Delta^2 - 2\Delta + 1) \text{ otherwise} \end{cases}$$

Facts:

- reached for blown-up C₅'s only [Chung, Gyárfás, Tuza, Trotter 1990]
- verified for $\Delta = 3$ [Andersen 1992]
- for $\Delta =$ 4, we know $\chi_s'(G) \leq$ 22 [Cranston 2006]

Theorem [Molloy, Reed - 1997]

If Δ is large enough, then $\chi'_s(G) \leq 1.998\Delta^2$.

Beyond Erdős and Nešetřil's conjecture

Less dependencies for graphs with no small cycles.

Beyond Erdős and Nešetřil's conjecture

Less dependencies for graphs with no small cycles.

If G is C_4 -free, then $\chi'_s(G) \leq (2+o(1))\frac{\Delta^2}{\ln \Delta}$.

Beyond Erdős and Nešetřil's conjecture

Less dependencies for graphs with no small cycles.

Can we prove that for other graphs with no small cycles?

g: minimum length of a cycle in an explicit graph

Theorem [Faudree, Gyárfás, Schelp, Tuza – 1990]

If G is planar, then $\chi_s'(G) \leq 4\Delta + 4$.

 $4\Delta-4$ should be the right upper bound.

g: minimum length of a cycle in an explicit graph

Theorem [Faudree, Gyárfás, Schelp, Tuza – 1990]

If G is planar, then $\chi'_{s}(G) \leq 4\Delta + 4$.

 $4\Delta-4$ should be the right upper bound.

Improvable for sparse planar graphs, *i.e.* of large girth.

Theorem [B., Harutyunyan, Hocquard, Valicov – 2014]						
		$\Delta \ge 7$	$\Delta \in \{5,6\}$	$\Delta = 4$	$\Delta = 3$	
	no girth restriction	4Δ	$4\Delta + 4$	$4\Delta + 4$	$3\Delta + 1$	
	$g \ge 4$	4Δ	4Δ	$4\Delta + 4$	$3\Delta + 1$	
	$g \ge 5$	4Δ	4Δ	4Δ	$3\Delta + 1$	
	$g \ge 6$	$3\Delta + 1$	$3\Delta + 1$	$3\Delta + 1$	3Δ	
	$g \ge 7$	3Δ	3Δ	3Δ	3Δ	
		-				

Conjecture [Faudree, Gyárfás, Schelp, Tuza – 1990]

If G is bipartite, then $\chi'_s(G) \leq \Delta^2$.

Reached e.g. for any complete bipartite graph $K_{a,a}$.

Conjecture [Faudree, Gyárfás, Schelp, Tuza - 1990]

If G is bipartite, then $\chi'_s(G) \leq \Delta^2$.

Reached e.g. for any complete bipartite graph $K_{a,a}$.

G = (A, B, E): bipartite graph with bipartition A and B (Δ_A, Δ_B) -bipartite graph: A and B have maximum degree Δ_A and Δ_B , resp.

Conjecture [Brualdi, Quinn Massey - 1993]

If G is (Δ_A, Δ_B) -bipartite, then $\chi'_s(G) \leq \Delta_A \Delta_B$.

Refined conjecture for bipartite graphs

Conjecture [Brualdi, Quinn Massey - 1993]

If G is (Δ_A, Δ_B) -bipartite, then $\chi'_s(G) \leq \Delta_A \Delta_B$.

Verified when:

- $\Delta_A = \Delta_B = 3$ [Steger and Yu 1993]
- $\Delta_A = 2$ [Nakprasit 2008]

Refined conjecture for bipartite graphs

Conjecture [Brualdi, Quinn Massey - 1993]

If G is (Δ_A, Δ_B) -bipartite, then $\chi'_s(G) \leq \Delta_A \Delta_B$.

Verified when:

- $\Delta_A = \Delta_B = 3$ [Steger and Yu 1993]
- △_A = 2 [Nakprasit 2008]

We confirm the first conjecture for $\Delta_A = 3$ and $\Delta_B \ge 4$.

Theorem [B., Lagoutte, Valicov – 2014+] If G is $(3, \Delta_B)$ -bipartite, then $\chi'_s(G) \le 4\Delta_B$.

Conclusions and open questions

Planar graphs:

- For girth at least 6, we proved that $3\Delta + 1$ colours are enough...
- ... but we do not know whether it is tight.

- For girth at least 6, we proved that $3\Delta + 1$ colours are enough...
- ... but we do not know whether it is tight.
- For some values of g, the $4\Delta + 4$ bound has not been improved yet...
- ... can we improve this?

- For girth at least 6, we proved that $3\Delta + 1$ colours are enough...
- ... but we do not know whether it is tight.
- For some values of g, the $4\Delta + 4$ bound has not been improved yet...
- ... can we improve this?

Bipartite graphs:

- For girth at least 6, we proved that $3\Delta + 1$ colours are enough...
- ... but we do not know whether it is tight.
- For some values of g, the $4\Delta + 4$ bound has not been improved yet...
- ... can we improve this?

Bipartite graphs:

- For $(3, \Delta_B)$ -bipartite graphs, we proved that $4\Delta_B$ colours suffice...
- ... but $3\Delta_B$ should be the right upper bound.

- For girth at least 6, we proved that $3\Delta + 1$ colours are enough...
- ... but we do not know whether it is tight.
- For some values of g, the $4\Delta + 4$ bound has not been improved yet...
- ... can we improve this?

Bipartite graphs:

- For $(3, \Delta_B)$ -bipartite graphs, we proved that $4\Delta_B$ colours suffice...
- ... but $3\Delta_B$ should be the right upper bound.
- The conjecture is still open for general bipartite graphs...
- ... can our proof scheme be generalized?

Thank you for your attention.